基于多层有机半导体异质结构的高性能多级非易失性有机场效应晶体管存储器

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yangzhou Qian, Jiayu Li, Wen Li, Ziyi Song, Hao Yu, Ziyi Feng, Wei Shi, Wei Huang and Mingdong Yi
{"title":"基于多层有机半导体异质结构的高性能多级非易失性有机场效应晶体管存储器","authors":"Yangzhou Qian, Jiayu Li, Wen Li, Ziyi Song, Hao Yu, Ziyi Feng, Wei Shi, Wei Huang and Mingdong Yi","doi":"10.1039/D4TC02842B","DOIUrl":null,"url":null,"abstract":"<p >Nonvolatile organic field-effect transistor (OFET) memory devices have great potential for next-generation memory due to their advantages of low cost, light weight, mechanical flexibility and easy processing. However, addressing the issue of limited data storage capacity remains a critical challenge. In this study, we propose a multilevel nonvolatile OFET memory device featuring five-layer organic semiconductor heterostructures composed of pentacene and <em>N</em>,<em>N</em>′-ditridecylperylene-3,4,9,10-tetracarb-oxylic diimide (P13). The innovative semiconductor heterostructures exhibit quantum well-like characteristics, and efficiently function as charge trapping sites. These characteristics synergize with the charge trapping properties of the polystyrene (PS) layer, resulting in a significant enhancement of the device's charge storage capacity. The organic semiconductor heterostructure-based memory device demonstrates exceptional nonvolatile memory properties, including a large charge storage capacity (5.48 × 10<small><sup>12</sup></small> cm<small><sup>−2</sup></small>), a high mobility (2.06 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>), a high ON/OFF current ratio (10<small><sup>5</sup></small>), and a long data retention (over 10<small><sup>4</sup></small> s). Moreover, a four-level data storage was achieved owing to the device's high charge capacity properties, significantly augmenting memory capacity. This research presents a promising methodology for the realization of high-performance organic memory for future technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance multilevel nonvolatile organic field-effect transistor memory based on multilayer organic semiconductor heterostructures†\",\"authors\":\"Yangzhou Qian, Jiayu Li, Wen Li, Ziyi Song, Hao Yu, Ziyi Feng, Wei Shi, Wei Huang and Mingdong Yi\",\"doi\":\"10.1039/D4TC02842B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nonvolatile organic field-effect transistor (OFET) memory devices have great potential for next-generation memory due to their advantages of low cost, light weight, mechanical flexibility and easy processing. However, addressing the issue of limited data storage capacity remains a critical challenge. In this study, we propose a multilevel nonvolatile OFET memory device featuring five-layer organic semiconductor heterostructures composed of pentacene and <em>N</em>,<em>N</em>′-ditridecylperylene-3,4,9,10-tetracarb-oxylic diimide (P13). The innovative semiconductor heterostructures exhibit quantum well-like characteristics, and efficiently function as charge trapping sites. These characteristics synergize with the charge trapping properties of the polystyrene (PS) layer, resulting in a significant enhancement of the device's charge storage capacity. The organic semiconductor heterostructure-based memory device demonstrates exceptional nonvolatile memory properties, including a large charge storage capacity (5.48 × 10<small><sup>12</sup></small> cm<small><sup>−2</sup></small>), a high mobility (2.06 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>), a high ON/OFF current ratio (10<small><sup>5</sup></small>), and a long data retention (over 10<small><sup>4</sup></small> s). Moreover, a four-level data storage was achieved owing to the device's high charge capacity properties, significantly augmenting memory capacity. This research presents a promising methodology for the realization of high-performance organic memory for future technology.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02842b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02842b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非易失性有机场效应晶体管(OFET)存储器件具有成本低、重量轻、机械灵活和易于加工等优点,因此在下一代存储器领域具有巨大潜力。然而,如何解决数据存储容量有限的问题仍然是一个严峻的挑战。在这项研究中,我们提出了一种多级非易失性 OFET 存储器件,其特点是由五碳烯和 N,N′-二ridecylene-3,4,9,10-tetracarb-oxylic diimide(P13)组成的五层有机半导体异质结构。这种创新的半导体异质结构显示出类似量子阱的特性,并能有效地充当电荷捕获点。这些特性与聚苯乙烯(PS)层的电荷捕获特性协同作用,显著提高了器件的电荷存储容量。这种基于有机半导体异质结构的存储器件具有优异的非易失性存储器特性,包括大电荷存储容量(5.48 × 1012 cm-2)、高迁移率(2.06 cm2 V-1 s-1)、高导通/关断电流比(105)和长数据保留时间(超过 104 秒)。此外,由于该器件的高电荷容量特性,实现了四级数据存储,大大提高了存储容量。这项研究为未来技术实现高性能有机存储器提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance multilevel nonvolatile organic field-effect transistor memory based on multilayer organic semiconductor heterostructures†

High-performance multilevel nonvolatile organic field-effect transistor memory based on multilayer organic semiconductor heterostructures†

High-performance multilevel nonvolatile organic field-effect transistor memory based on multilayer organic semiconductor heterostructures†

Nonvolatile organic field-effect transistor (OFET) memory devices have great potential for next-generation memory due to their advantages of low cost, light weight, mechanical flexibility and easy processing. However, addressing the issue of limited data storage capacity remains a critical challenge. In this study, we propose a multilevel nonvolatile OFET memory device featuring five-layer organic semiconductor heterostructures composed of pentacene and N,N′-ditridecylperylene-3,4,9,10-tetracarb-oxylic diimide (P13). The innovative semiconductor heterostructures exhibit quantum well-like characteristics, and efficiently function as charge trapping sites. These characteristics synergize with the charge trapping properties of the polystyrene (PS) layer, resulting in a significant enhancement of the device's charge storage capacity. The organic semiconductor heterostructure-based memory device demonstrates exceptional nonvolatile memory properties, including a large charge storage capacity (5.48 × 1012 cm−2), a high mobility (2.06 cm2 V−1 s−1), a high ON/OFF current ratio (105), and a long data retention (over 104 s). Moreover, a four-level data storage was achieved owing to the device's high charge capacity properties, significantly augmenting memory capacity. This research presents a promising methodology for the realization of high-performance organic memory for future technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信