Jia Du, Xueguo Liu, Meng Guo, Bingke Li, Hongyong Ye and Lixuan Chen
{"title":"钴镍双金属配位聚合物作为催化剂提高氧进化反应活性","authors":"Jia Du, Xueguo Liu, Meng Guo, Bingke Li, Hongyong Ye and Lixuan Chen","doi":"10.1039/D4TC02996H","DOIUrl":null,"url":null,"abstract":"<p >Suitable coordination polymers (CPs) have significant promise for use in the realm of electrocatalysis due to their conceivable composition and structure. It poses a significant challenge to utilize coordination polymers as electrocatalysts for the oxygen evolution reaction (OER) owing to their limited catalytic efficiency and the inherent instability observed in current electrocatalysts. This study effectively constructed one-dimensional Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>–CAs with dual active sites utilizing a mixed metal method and examined its potential as an OER electrocatalyst. Adjusting the metal ratio of Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>–CAs can efficiently modulate the OER performance. After optimization, Co<small><sub>1/2</sub></small>Ni<small><sub>1/2</sub></small>–CA had the lowest reaction activation energy of 19.91 kJ mol<small><sup>−1</sup></small> at 25 °C and a high overpotential of 349 mV at 10 mA cm<small><sup>−2</sup></small>. Furthermore, at 55 °C, Co<small><sub>1/2</sub></small>Ni<small><sub>1/2</sub></small>–CA demonstrated a significant overpotential of 308 mV at 10 mA cm<small><sup>−2</sup></small>. This mixed metal strategy offers a practical approach to enhancing OER electrocatalytic performance, which can be accomplished by varying the electronic state.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoNi-bimetallic coordination polymers as catalyst for boosting oxygen evolution reaction activity†\",\"authors\":\"Jia Du, Xueguo Liu, Meng Guo, Bingke Li, Hongyong Ye and Lixuan Chen\",\"doi\":\"10.1039/D4TC02996H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Suitable coordination polymers (CPs) have significant promise for use in the realm of electrocatalysis due to their conceivable composition and structure. It poses a significant challenge to utilize coordination polymers as electrocatalysts for the oxygen evolution reaction (OER) owing to their limited catalytic efficiency and the inherent instability observed in current electrocatalysts. This study effectively constructed one-dimensional Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>–CAs with dual active sites utilizing a mixed metal method and examined its potential as an OER electrocatalyst. Adjusting the metal ratio of Co<small><sub><em>x</em></sub></small>Ni<small><sub>1−<em>x</em></sub></small>–CAs can efficiently modulate the OER performance. After optimization, Co<small><sub>1/2</sub></small>Ni<small><sub>1/2</sub></small>–CA had the lowest reaction activation energy of 19.91 kJ mol<small><sup>−1</sup></small> at 25 °C and a high overpotential of 349 mV at 10 mA cm<small><sup>−2</sup></small>. Furthermore, at 55 °C, Co<small><sub>1/2</sub></small>Ni<small><sub>1/2</sub></small>–CA demonstrated a significant overpotential of 308 mV at 10 mA cm<small><sup>−2</sup></small>. This mixed metal strategy offers a practical approach to enhancing OER electrocatalytic performance, which can be accomplished by varying the electronic state.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02996h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02996h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
合适的配位聚合物(CPs)因其可想象的组成和结构而在电催化领域大有可为。由于配位聚合物的催化效率有限,而且目前的电催化剂存在固有的不稳定性,因此将配位聚合物用作氧进化反应(OER)的电催化剂是一项重大挑战。本研究利用混合金属法有效地构建了具有双活性位点的一维 CoxNi1-x-CAs,并考察了其作为氧进化反应电催化剂的潜力。调整 CoxNi1-x-CAs 的金属比例可有效调节其 OER 性能。经过优化后,Co1/2Ni1/2-CA 在 25 °C 时的反应活化能最低,为 19.91 kJ mol-1,在 10 mA cm-2 时的过电位高达 349 mV。此外,在 55 °C 时,Co1/2Ni1/2-CA 在 10 mA cm-2 的条件下显示出 308 mV 的显著过电位。这种混合金属策略提供了一种提高 OER 电催化性能的实用方法,可以通过改变电子状态来实现。
CoNi-bimetallic coordination polymers as catalyst for boosting oxygen evolution reaction activity†
Suitable coordination polymers (CPs) have significant promise for use in the realm of electrocatalysis due to their conceivable composition and structure. It poses a significant challenge to utilize coordination polymers as electrocatalysts for the oxygen evolution reaction (OER) owing to their limited catalytic efficiency and the inherent instability observed in current electrocatalysts. This study effectively constructed one-dimensional CoxNi1−x–CAs with dual active sites utilizing a mixed metal method and examined its potential as an OER electrocatalyst. Adjusting the metal ratio of CoxNi1−x–CAs can efficiently modulate the OER performance. After optimization, Co1/2Ni1/2–CA had the lowest reaction activation energy of 19.91 kJ mol−1 at 25 °C and a high overpotential of 349 mV at 10 mA cm−2. Furthermore, at 55 °C, Co1/2Ni1/2–CA demonstrated a significant overpotential of 308 mV at 10 mA cm−2. This mixed metal strategy offers a practical approach to enhancing OER electrocatalytic performance, which can be accomplished by varying the electronic state.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors