Jing Zhang, Xilai Zhao, Jiangang Liang, Tong Cai, Chiben Zhang, Yifang Yuan, Hong Li, Xiao Yang, Xiaobao Zhang, Xi Wang, Tianwu Wang and Jing Lou
{"title":"具有解耦谐振调制功能的晶格增强型光驱动太赫兹元器件","authors":"Jing Zhang, Xilai Zhao, Jiangang Liang, Tong Cai, Chiben Zhang, Yifang Yuan, Hong Li, Xiao Yang, Xiaobao Zhang, Xi Wang, Tianwu Wang and Jing Lou","doi":"10.1039/D4TC01654H","DOIUrl":null,"url":null,"abstract":"<p >Light-driven terahertz metasurface-based platforms, characterized by flexible and dynamic characteristics, exhibit significant potential in advancing optics applications. Tremendous effort has been devoted to exploring an effective way to boost the performance of optical elements. However, the typical mechanisms to design superior devices, including the nonlinear plasmonic, local-field construction, and Kerr effect are limited to the narrow working band and single function accompanied by efficiency loss, high-standard machining accuracy, and trade-offs between operating rate and signal-to-noise ratio. Here, a direct, efficient, and universal strategy for boosting the performance of light-driven devices is proposed to overcome these limitations. The performance of tri-function ultrafast switches operating at an ultrafast rate of 2 ps, including broadband single-amplitude modulators as well as decoupled resonant modulation with annihilation and enhancement, is manipulated by adjusting the lattice period. At all operating frequencies, the group delay characteristics are suppressed for high-fidelity communication. Furthermore, the loss-sensitive performance of the proposed metasurfaces, possessing highly precise sensing functions by light-driven calibration, could improve to 5/RIU through lattice enhancement. Thus, this work provides a simple and generalized paradigm for advancing ultrafast integrated optical devices and reusable precise sensors.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lattice-enhanced light-driven terahertz meta-device with decoupled resonant modulation†\",\"authors\":\"Jing Zhang, Xilai Zhao, Jiangang Liang, Tong Cai, Chiben Zhang, Yifang Yuan, Hong Li, Xiao Yang, Xiaobao Zhang, Xi Wang, Tianwu Wang and Jing Lou\",\"doi\":\"10.1039/D4TC01654H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Light-driven terahertz metasurface-based platforms, characterized by flexible and dynamic characteristics, exhibit significant potential in advancing optics applications. Tremendous effort has been devoted to exploring an effective way to boost the performance of optical elements. However, the typical mechanisms to design superior devices, including the nonlinear plasmonic, local-field construction, and Kerr effect are limited to the narrow working band and single function accompanied by efficiency loss, high-standard machining accuracy, and trade-offs between operating rate and signal-to-noise ratio. Here, a direct, efficient, and universal strategy for boosting the performance of light-driven devices is proposed to overcome these limitations. The performance of tri-function ultrafast switches operating at an ultrafast rate of 2 ps, including broadband single-amplitude modulators as well as decoupled resonant modulation with annihilation and enhancement, is manipulated by adjusting the lattice period. At all operating frequencies, the group delay characteristics are suppressed for high-fidelity communication. Furthermore, the loss-sensitive performance of the proposed metasurfaces, possessing highly precise sensing functions by light-driven calibration, could improve to 5/RIU through lattice enhancement. Thus, this work provides a simple and generalized paradigm for advancing ultrafast integrated optical devices and reusable precise sensors.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01654h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01654h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A lattice-enhanced light-driven terahertz meta-device with decoupled resonant modulation†
Light-driven terahertz metasurface-based platforms, characterized by flexible and dynamic characteristics, exhibit significant potential in advancing optics applications. Tremendous effort has been devoted to exploring an effective way to boost the performance of optical elements. However, the typical mechanisms to design superior devices, including the nonlinear plasmonic, local-field construction, and Kerr effect are limited to the narrow working band and single function accompanied by efficiency loss, high-standard machining accuracy, and trade-offs between operating rate and signal-to-noise ratio. Here, a direct, efficient, and universal strategy for boosting the performance of light-driven devices is proposed to overcome these limitations. The performance of tri-function ultrafast switches operating at an ultrafast rate of 2 ps, including broadband single-amplitude modulators as well as decoupled resonant modulation with annihilation and enhancement, is manipulated by adjusting the lattice period. At all operating frequencies, the group delay characteristics are suppressed for high-fidelity communication. Furthermore, the loss-sensitive performance of the proposed metasurfaces, possessing highly precise sensing functions by light-driven calibration, could improve to 5/RIU through lattice enhancement. Thus, this work provides a simple and generalized paradigm for advancing ultrafast integrated optical devices and reusable precise sensors.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors