用于大功率和高频应用的 GaN HEMT 模块的先进封装技术:综述

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Meiyu Wang;Peng Gao;Fangmin Shi;Weibo Hu;Xudong Wang;Haidong Yan;Yunhui Mei
{"title":"用于大功率和高频应用的 GaN HEMT 模块的先进封装技术:综述","authors":"Meiyu Wang;Peng Gao;Fangmin Shi;Weibo Hu;Xudong Wang;Haidong Yan;Yunhui Mei","doi":"10.1109/TCPMT.2024.3447079","DOIUrl":null,"url":null,"abstract":"The gallium-nitride (GaN) high-electron-mobility transistors (HEMT) devices have great potential for high-power, high-temperature, and high-frequency applications. However, it is challenging to package GaN HEMT power module with both low parasitic inductance and thermal resistance because the lateral GaN HEMT devices have fast switching speed, high heat flux density, and small die size. This article made a comprehensive review on the state-of-the-art packaging technologies of GaN HEMT power modules based on different substrate integration structures, including printed circuit board (PCB) surface mounting, wire-bonded flip chip, PCB-embedded, ceramic-substrate integrated, insulated metal substrate (IMS) integrated, and hybrid PCB-on-direct bond copper (DBC) packaging. Each technology has a tradeoff among parasitic inductance, thermal performance, and manufacturability. Innovations are still necessary for packaging GaN HEMT modules for their applications in high-frequency and high-power-density converters.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"14 9","pages":"1537-1550"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Packaging Technology of GaN HEMT Module for High-Power and High-Frequency Applications: A Review\",\"authors\":\"Meiyu Wang;Peng Gao;Fangmin Shi;Weibo Hu;Xudong Wang;Haidong Yan;Yunhui Mei\",\"doi\":\"10.1109/TCPMT.2024.3447079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gallium-nitride (GaN) high-electron-mobility transistors (HEMT) devices have great potential for high-power, high-temperature, and high-frequency applications. However, it is challenging to package GaN HEMT power module with both low parasitic inductance and thermal resistance because the lateral GaN HEMT devices have fast switching speed, high heat flux density, and small die size. This article made a comprehensive review on the state-of-the-art packaging technologies of GaN HEMT power modules based on different substrate integration structures, including printed circuit board (PCB) surface mounting, wire-bonded flip chip, PCB-embedded, ceramic-substrate integrated, insulated metal substrate (IMS) integrated, and hybrid PCB-on-direct bond copper (DBC) packaging. Each technology has a tradeoff among parasitic inductance, thermal performance, and manufacturability. Innovations are still necessary for packaging GaN HEMT modules for their applications in high-frequency and high-power-density converters.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"14 9\",\"pages\":\"1537-1550\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643466/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643466/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓(GaN)高电子迁移率晶体管(HEMT)器件在大功率、高温和高频应用方面具有巨大潜力。然而,由于侧向 GaN HEMT 器件具有开关速度快、热通量密度高和芯片尺寸小等特点,因此封装具有低寄生电感和热阻的 GaN HEMT 功率模块是一项挑战。本文全面综述了基于不同基板集成结构的 GaN HEMT 功率模块的最新封装技术,包括印刷电路板(PCB)表面贴装、线键合倒装芯片、PCB 嵌入、陶瓷基板集成、绝缘金属基板(IMS)集成以及 PCB 直接键合铜(DBC)混合封装。每种技术都需要在寄生电感、热性能和可制造性之间进行权衡。为了将 GaN HEMT 模块应用于高频和高功率密度转换器,封装技术仍需创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Packaging Technology of GaN HEMT Module for High-Power and High-Frequency Applications: A Review
The gallium-nitride (GaN) high-electron-mobility transistors (HEMT) devices have great potential for high-power, high-temperature, and high-frequency applications. However, it is challenging to package GaN HEMT power module with both low parasitic inductance and thermal resistance because the lateral GaN HEMT devices have fast switching speed, high heat flux density, and small die size. This article made a comprehensive review on the state-of-the-art packaging technologies of GaN HEMT power modules based on different substrate integration structures, including printed circuit board (PCB) surface mounting, wire-bonded flip chip, PCB-embedded, ceramic-substrate integrated, insulated metal substrate (IMS) integrated, and hybrid PCB-on-direct bond copper (DBC) packaging. Each technology has a tradeoff among parasitic inductance, thermal performance, and manufacturability. Innovations are still necessary for packaging GaN HEMT modules for their applications in high-frequency and high-power-density converters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信