Jaime F. Aguayo-González, Hanna Ehrlich-Lopez, Luis Concha, Mariano Rivera
{"title":"用于体素内结构分析的轻量级神经网络","authors":"Jaime F. Aguayo-González, Hanna Ehrlich-Lopez, Luis Concha, Mariano Rivera","doi":"10.3389/fninf.2024.1277050","DOIUrl":null,"url":null,"abstract":"We present a novel neural network-based method for analyzing intra-voxel structures, addressing critical challenges in diffusion-weighted MRI analysis for brain connectivity and development studies. The network architecture, called the Local Neighborhood Neural Network, is designed to use the spatial correlations of neighboring voxels for an enhanced inference while reducing parameter overhead. Our model exploits these relationships to improve the analysis of complex structures and noisy data environments. We adopt a self-supervised approach to address the lack of ground truth data, generating signals of voxel neighborhoods to integrate the training set. This eliminates the need for manual annotations and facilitates training under realistic conditions. Comparative analyses show that our method outperforms the constrained spherical deconvolution (CSD) method in quantitative and qualitative validations. Using phantom images that mimic <jats:italic>in vivo</jats:italic> data, our approach improves angular error, volume fraction estimation accuracy, and success rate. Furthermore, a qualitative comparison of the results in actual data shows a better spatial consistency of the proposed method in areas of real brain images. This approach demonstrates enhanced intra-voxel structure analysis capabilities and holds promise for broader application in various imaging scenarios.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"3 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-weight neural network for intra-voxel structure analysis\",\"authors\":\"Jaime F. Aguayo-González, Hanna Ehrlich-Lopez, Luis Concha, Mariano Rivera\",\"doi\":\"10.3389/fninf.2024.1277050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel neural network-based method for analyzing intra-voxel structures, addressing critical challenges in diffusion-weighted MRI analysis for brain connectivity and development studies. The network architecture, called the Local Neighborhood Neural Network, is designed to use the spatial correlations of neighboring voxels for an enhanced inference while reducing parameter overhead. Our model exploits these relationships to improve the analysis of complex structures and noisy data environments. We adopt a self-supervised approach to address the lack of ground truth data, generating signals of voxel neighborhoods to integrate the training set. This eliminates the need for manual annotations and facilitates training under realistic conditions. Comparative analyses show that our method outperforms the constrained spherical deconvolution (CSD) method in quantitative and qualitative validations. Using phantom images that mimic <jats:italic>in vivo</jats:italic> data, our approach improves angular error, volume fraction estimation accuracy, and success rate. Furthermore, a qualitative comparison of the results in actual data shows a better spatial consistency of the proposed method in areas of real brain images. This approach demonstrates enhanced intra-voxel structure analysis capabilities and holds promise for broader application in various imaging scenarios.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2024.1277050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1277050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Light-weight neural network for intra-voxel structure analysis
We present a novel neural network-based method for analyzing intra-voxel structures, addressing critical challenges in diffusion-weighted MRI analysis for brain connectivity and development studies. The network architecture, called the Local Neighborhood Neural Network, is designed to use the spatial correlations of neighboring voxels for an enhanced inference while reducing parameter overhead. Our model exploits these relationships to improve the analysis of complex structures and noisy data environments. We adopt a self-supervised approach to address the lack of ground truth data, generating signals of voxel neighborhoods to integrate the training set. This eliminates the need for manual annotations and facilitates training under realistic conditions. Comparative analyses show that our method outperforms the constrained spherical deconvolution (CSD) method in quantitative and qualitative validations. Using phantom images that mimic in vivo data, our approach improves angular error, volume fraction estimation accuracy, and success rate. Furthermore, a qualitative comparison of the results in actual data shows a better spatial consistency of the proposed method in areas of real brain images. This approach demonstrates enhanced intra-voxel structure analysis capabilities and holds promise for broader application in various imaging scenarios.