双卷积恶意软件网络(DCMN):使用双卷积神经网络进行基于图像的恶意软件分类

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth
{"title":"双卷积恶意软件网络(DCMN):使用双卷积神经网络进行基于图像的恶意软件分类","authors":"Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth","doi":"10.3390/electronics13183607","DOIUrl":null,"url":null,"abstract":"Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Convolutional Malware Network (DCMN): An Image-Based Malware Classification Using Dual Convolutional Neural Networks\",\"authors\":\"Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth\",\"doi\":\"10.3390/electronics13183607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183607\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183607","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

恶意软件攻击会产生连带效应,造成经济损失、隐私泄露、业务中断。通过预防这些攻击,个人和组织可以保护其运营的宝贵资产,并赢得更多信任。在本文中,我们提出了一种基于双卷积神经网络(DCNN)的恶意软件分类架构。它首先将恶意软件二进制文件转换为二维灰度图像,然后训练一个定制的双卷积神经网络,用于恶意软件的多重分类。本文提出了一种利用双 CNN 进行恶意软件分类的高效方法。该模型利用自定义结构提取分支和预训练的 ResNet-50 模型的互补优势进行恶意软件图像分类。通过结合从两个分支提取的特征,该模型取得了比单分支方法更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Convolutional Malware Network (DCMN): An Image-Based Malware Classification Using Dual Convolutional Neural Networks
Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信