Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth
{"title":"双卷积恶意软件网络(DCMN):使用双卷积神经网络进行基于图像的恶意软件分类","authors":"Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth","doi":"10.3390/electronics13183607","DOIUrl":null,"url":null,"abstract":"Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Convolutional Malware Network (DCMN): An Image-Based Malware Classification Using Dual Convolutional Neural Networks\",\"authors\":\"Bassam Al-Masri, Nader Bakir, Ali El-Zaart, Khouloud Samrouth\",\"doi\":\"10.3390/electronics13183607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183607\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183607","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dual Convolutional Malware Network (DCMN): An Image-Based Malware Classification Using Dual Convolutional Neural Networks
Malware attacks have a cascading effect, causing financial harm, compromising privacy, operations and interrupting. By preventing these attacks, individuals and organizations can safeguard the valuable assets of their operations, and gain more trust. In this paper, we propose a dual convolutional neural network (DCNN) based architecture for malware classification. It consists first of converting malware binary files into 2D grayscale images and then training a customized dual CNN for malware multi-classification. This paper proposes an efficient approach for malware classification using dual CNNs. The model leverages the complementary strengths of a custom structure extraction branch and a pre-trained ResNet-50 model for malware image classification. By combining features extracted from both branches, the model achieved superior performance compared to a single-branch approach.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.