利用 ACD-NSGA-II 算法为异构目标分配多无人机侦察任务

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu
{"title":"利用 ACD-NSGA-II 算法为异构目标分配多无人机侦察任务","authors":"Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu","doi":"10.3390/electronics13183609","DOIUrl":null,"url":null,"abstract":"The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets with ACD-NSGA-II Algorithm\",\"authors\":\"Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu\",\"doi\":\"10.3390/electronics13183609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183609\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的任务分配算法通常只解决基于点的模型。本文提出了一种新颖的探测搜索任务分配算法。首先,通过考虑无人机的位置和姿态信息,以及实际场景中存在的异质目标类型,生成最优侦察路径。随后,根据解在空间中的相对位置,考虑父解的空间分布以及不确定目标和地形的限制,提出了自适应拥挤距离计算(ACD-NSGA-II)。最后,在两种不同的目标概率情况下,使用数字模拟进行了对比实验。此外,还在 100 个案例中对改进算法进行了进一步评估,并将帕累托解决方案集与其他算法进行了比较,以证明该算法的整体适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets with ACD-NSGA-II Algorithm
The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信