Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu
{"title":"利用 ACD-NSGA-II 算法为异构目标分配多无人机侦察任务","authors":"Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu","doi":"10.3390/electronics13183609","DOIUrl":null,"url":null,"abstract":"The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets with ACD-NSGA-II Algorithm\",\"authors\":\"Hong Zhang, Kunzhong Miao, Huangzhi Yu, Yifeng Niu\",\"doi\":\"10.3390/electronics13183609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183609\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets with ACD-NSGA-II Algorithm
The existing task assignment algorithms usually solve only a point-based model. This paper proposes a novel algorithm for task assignment in detection search tasks. Firstly, the optimal reconnaissance path is generated by considering the drone’s position and attitude information, as well as the type of heterogeneous targets present in the actual scene. Subsequently, an adaptive crowding distance calculation (ACD-NSGA-II) is proposed based on the relative position of solutions in space, taking into account the spatial distribution of parent solutions and constraints imposed by uncertain targets and terrain. Finally, comparative experiments using digital simulation are conducted under two different target probability scenarios. Moreover, the improved algorithm is further evaluated across 100 cases, and a comparison of the Pareto solution set with other algorithms is conducted to demonstrate the algorithm’s overall adaptability.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.