基于注意力机制的改进型 Retinex 低照度图像增强方法

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shan Jiang, Yingshan Shi, Yingchun Zhang, Yulin Zhang
{"title":"基于注意力机制的改进型 Retinex 低照度图像增强方法","authors":"Shan Jiang, Yingshan Shi, Yingchun Zhang, Yulin Zhang","doi":"10.3390/electronics13183645","DOIUrl":null,"url":null,"abstract":"Captured images often suffer from issues like color distortion, detail loss, and significant noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing brightness enhancement with the preservation of natural colors and details is particularly challenging in low-light image enhancement. To address these issues, this paper proposes an unsupervised low-light image enhancement approach using a U-net neural network with Retinex theory and a Convolutional Block Attention Module (CBAM). This method leverages Retinex-based decomposition to separate and enhance the reflectance map, ensuring visibility and contrast without introducing artifacts. A local adaptive enhancement function improves the brightness of the reflection map, while the designed loss function addresses illumination smoothness, brightness enhancement, color restoration, and denoising. Experiments validate the effectiveness of our method, revealing improved image brightness, reduced color deviation, and superior color restoration compared to leading approaches.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Retinex-Based Approach Based on Attention Mechanisms for Low-Light Image Enhancement\",\"authors\":\"Shan Jiang, Yingshan Shi, Yingchun Zhang, Yulin Zhang\",\"doi\":\"10.3390/electronics13183645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Captured images often suffer from issues like color distortion, detail loss, and significant noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing brightness enhancement with the preservation of natural colors and details is particularly challenging in low-light image enhancement. To address these issues, this paper proposes an unsupervised low-light image enhancement approach using a U-net neural network with Retinex theory and a Convolutional Block Attention Module (CBAM). This method leverages Retinex-based decomposition to separate and enhance the reflectance map, ensuring visibility and contrast without introducing artifacts. A local adaptive enhancement function improves the brightness of the reflection map, while the designed loss function addresses illumination smoothness, brightness enhancement, color restoration, and denoising. Experiments validate the effectiveness of our method, revealing improved image brightness, reduced color deviation, and superior color restoration compared to leading approaches.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183645\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183645","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

捕获的图像通常存在色彩失真、细节丢失和严重噪点等问题。因此,有必要提高图像质量,以进行可靠的威胁检测。在低照度图像增强中,如何在增强亮度与保留自然色彩和细节之间取得平衡尤其具有挑战性。为解决这些问题,本文提出了一种无监督低照度图像增强方法,该方法采用了具有 Retinex 理论的 U-net 神经网络和卷积块注意力模块 (CBAM)。该方法利用基于 Retinex 的分解来分离和增强反射图,从而在不引入伪影的情况下确保可见度和对比度。局部自适应增强函数可提高反射图的亮度,而设计的损失函数可解决光照平滑、亮度增强、色彩还原和去噪等问题。实验验证了我们方法的有效性,与其他领先方法相比,我们的方法提高了图像亮度,减少了色彩偏差,并实现了出色的色彩还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Retinex-Based Approach Based on Attention Mechanisms for Low-Light Image Enhancement
Captured images often suffer from issues like color distortion, detail loss, and significant noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing brightness enhancement with the preservation of natural colors and details is particularly challenging in low-light image enhancement. To address these issues, this paper proposes an unsupervised low-light image enhancement approach using a U-net neural network with Retinex theory and a Convolutional Block Attention Module (CBAM). This method leverages Retinex-based decomposition to separate and enhance the reflectance map, ensuring visibility and contrast without introducing artifacts. A local adaptive enhancement function improves the brightness of the reflection map, while the designed loss function addresses illumination smoothness, brightness enhancement, color restoration, and denoising. Experiments validate the effectiveness of our method, revealing improved image brightness, reduced color deviation, and superior color restoration compared to leading approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信