暴露于缺氧环境中的香港鲫的抗氧化能力、与能量代谢相关的酶活性以及转录组分析

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pingping He, Wei Li, Pinyuan Wei, Linyuan Jiang, Junliang Guan, Yuan Ma, Li Zhang, Yongxian Chen, Yusi Zheng, Xingzhi Zhang, Jinxia Peng
{"title":"暴露于缺氧环境中的香港鲫的抗氧化能力、与能量代谢相关的酶活性以及转录组分析","authors":"Pingping He, Wei Li, Pinyuan Wei, Linyuan Jiang, Junliang Guan, Yuan Ma, Li Zhang, Yongxian Chen, Yusi Zheng, Xingzhi Zhang, Jinxia Peng","doi":"10.3390/antiox13091063","DOIUrl":null,"url":null,"abstract":"Crassostrea hongkongensis (C. hongkongensis) is one of the three most commonly cultivated oyster species in China. Seasonal hypoxia is one of the most serious threats to its metabolism, reproductive behavior, and survival. To investigate the effects of hypoxia stress on the antioxidant capacity and energy metabolism of C. hongkongensis, the total antioxidant capacity (T-AOC), glycogen content, and enzyme activities (phosphofructokinase, PFK; pyruvate kinase, PK; phosphoenolpyruvate carboxykinase, PEPCK) of oysters were determined under normoxic (DO 6 ± 0.2 mg/L) and hypoxic (DO 1.5 mg/L) conditions at 0 h, 6 h, 48 h, and 72 h. We also determined the T-AOC, glycogen content, and enzyme activities of oysters under reoxygenation (recovered to normoxia for 24 h). To further examine the potential molecular regulatory mechanism of hypoxic adaptation, a transcriptome analysis was conducted on the gill of C. hongkongensis under normoxia (N, 72 h), hypoxia (H, 72 h), and reoxygenation (R). After being exposed to hypoxia for 6 h, the T-AOC, glycogen content, and enzyme activities of PK, PFK, and PEPCK in C. hongkongensis were significantly decreased. However, after prolonging the duration of hypoxia exposure for 72 h, the T-AOC, glycogen content, and enzyme activities increased compared to that of 48 h. After 24 h reoxygenation, the T-AOC, glycogen content, and enzyme activity of PK and PFK returned to close to initial levels. In addition, a transcriptome analysis discovered 6097 novel genes by mapping the C. hongkongensis genome with the clean reads. In total, 352 differentially expressed genes (DEGs) were identified in the H vs. N comparison group (235 upregulated and 117 downregulated genes). After recovery to normoxia, 292 DEGs (134 upregulated and 158 downregulated genes) were identified in the R vs. N comparison group, and 632 DEGs were identified (253 upregulated and 379 downregulated genes) in the R vs. H comparison group. The DEGs included some hypoxia-tolerant genes, such as phosphoenolpyruvate carboxykinase (PEPCK), mitochondrial (AOX), tyramine beta-hydroxylase (TBH), superoxide dismutase (SOD), glutathione S-transferase (GST), and egl nine homolog 1 isoform X2 (EGLN1). Additionally, DEGs were significantly enriched in the KEGG pathways that are involved in hypoxia tolerance, including the metabolism of xenobiotics by cytochrome P450 pathways and the HIF-1 signaling pathway. Then, we selected the five hypoxic-tolerant candidate DEGs for real-time quantitative polymerase chain reaction (RT-qPCR) validation, and the results were consistent with the transcriptome sequencing data. These discoveries have increased our understanding of hypoxia tolerance, recovery ability after reoxygenation, and molecular mechanisms governing the responses to hypoxia in C. hongkongensis.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant Capacity, Enzyme Activities Related to Energy Metabolism, and Transcriptome Analysis of Crassostrea hongkongensis Exposed to Hypoxia\",\"authors\":\"Pingping He, Wei Li, Pinyuan Wei, Linyuan Jiang, Junliang Guan, Yuan Ma, Li Zhang, Yongxian Chen, Yusi Zheng, Xingzhi Zhang, Jinxia Peng\",\"doi\":\"10.3390/antiox13091063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crassostrea hongkongensis (C. hongkongensis) is one of the three most commonly cultivated oyster species in China. Seasonal hypoxia is one of the most serious threats to its metabolism, reproductive behavior, and survival. To investigate the effects of hypoxia stress on the antioxidant capacity and energy metabolism of C. hongkongensis, the total antioxidant capacity (T-AOC), glycogen content, and enzyme activities (phosphofructokinase, PFK; pyruvate kinase, PK; phosphoenolpyruvate carboxykinase, PEPCK) of oysters were determined under normoxic (DO 6 ± 0.2 mg/L) and hypoxic (DO 1.5 mg/L) conditions at 0 h, 6 h, 48 h, and 72 h. We also determined the T-AOC, glycogen content, and enzyme activities of oysters under reoxygenation (recovered to normoxia for 24 h). To further examine the potential molecular regulatory mechanism of hypoxic adaptation, a transcriptome analysis was conducted on the gill of C. hongkongensis under normoxia (N, 72 h), hypoxia (H, 72 h), and reoxygenation (R). After being exposed to hypoxia for 6 h, the T-AOC, glycogen content, and enzyme activities of PK, PFK, and PEPCK in C. hongkongensis were significantly decreased. However, after prolonging the duration of hypoxia exposure for 72 h, the T-AOC, glycogen content, and enzyme activities increased compared to that of 48 h. After 24 h reoxygenation, the T-AOC, glycogen content, and enzyme activity of PK and PFK returned to close to initial levels. In addition, a transcriptome analysis discovered 6097 novel genes by mapping the C. hongkongensis genome with the clean reads. In total, 352 differentially expressed genes (DEGs) were identified in the H vs. N comparison group (235 upregulated and 117 downregulated genes). After recovery to normoxia, 292 DEGs (134 upregulated and 158 downregulated genes) were identified in the R vs. N comparison group, and 632 DEGs were identified (253 upregulated and 379 downregulated genes) in the R vs. H comparison group. The DEGs included some hypoxia-tolerant genes, such as phosphoenolpyruvate carboxykinase (PEPCK), mitochondrial (AOX), tyramine beta-hydroxylase (TBH), superoxide dismutase (SOD), glutathione S-transferase (GST), and egl nine homolog 1 isoform X2 (EGLN1). Additionally, DEGs were significantly enriched in the KEGG pathways that are involved in hypoxia tolerance, including the metabolism of xenobiotics by cytochrome P450 pathways and the HIF-1 signaling pathway. Then, we selected the five hypoxic-tolerant candidate DEGs for real-time quantitative polymerase chain reaction (RT-qPCR) validation, and the results were consistent with the transcriptome sequencing data. These discoveries have increased our understanding of hypoxia tolerance, recovery ability after reoxygenation, and molecular mechanisms governing the responses to hypoxia in C. hongkongensis.\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13091063\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13091063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

香港牡蛎(Crassostrea hongkongensis)是中国最常养殖的三个牡蛎品种之一。季节性缺氧是对其新陈代谢、繁殖行为和生存最严重的威胁之一。为研究缺氧胁迫对香港牡蛎抗氧化能力和能量代谢的影响,分别测定了常氧(溶解氧 6 ± 0.我们还测定了复氧(恢复至常氧状态 24 小时)条件下牡蛎的 T-AOC、糖原含量和酶活性。为了进一步研究缺氧适应的潜在分子调控机制,我们对正常缺氧(N,72小时)、缺氧(H,72小时)和复氧(R)条件下的香港贻贝鳃进行了转录组分析。缺氧 6 小时后,香港鲫的 T-AOC、糖原含量以及 PK、PFK 和 PEPCK 的酶活性显著下降。然而,延长缺氧时间 72 小时后,T-AOC、糖原含量和酶活性比 48 小时时有所增加。此外,转录组分析还发现了 6097 个新基因。在H组与N组的对比组中,总共发现了352个差异表达基因(DEGs)(235个上调基因和117个下调基因)。恢复到常氧状态后,在 R vs. N 对比组中发现了 292 个 DEGs(134 个上调基因和 158 个下调基因),在 R vs. H 对比组中发现了 632 个 DEGs(253 个上调基因和 379 个下调基因)。DEGs包括一些耐缺氧基因,如磷酸烯醇丙酮酸羧激酶(PEPCK)、线粒体(AOX)、酪胺β-羟化酶(TBH)、超氧化物歧化酶(SOD)、谷胱甘肽S-转移酶(GST)和egl nine homolog 1 isoform X2(EGLN1)。此外,DEGs还显著富集于参与耐缺氧的KEGG通路中,包括细胞色素P450通路和HIF-1信号通路的异种生物代谢。然后,我们选择了五个耐缺氧候选 DEGs 进行实时定量聚合酶链反应(RT-qPCR)验证,结果与转录组测序数据一致。这些发现加深了我们对香港金丝猴耐缺氧能力、复氧后恢复能力以及对缺氧反应的分子机制的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antioxidant Capacity, Enzyme Activities Related to Energy Metabolism, and Transcriptome Analysis of Crassostrea hongkongensis Exposed to Hypoxia
Crassostrea hongkongensis (C. hongkongensis) is one of the three most commonly cultivated oyster species in China. Seasonal hypoxia is one of the most serious threats to its metabolism, reproductive behavior, and survival. To investigate the effects of hypoxia stress on the antioxidant capacity and energy metabolism of C. hongkongensis, the total antioxidant capacity (T-AOC), glycogen content, and enzyme activities (phosphofructokinase, PFK; pyruvate kinase, PK; phosphoenolpyruvate carboxykinase, PEPCK) of oysters were determined under normoxic (DO 6 ± 0.2 mg/L) and hypoxic (DO 1.5 mg/L) conditions at 0 h, 6 h, 48 h, and 72 h. We also determined the T-AOC, glycogen content, and enzyme activities of oysters under reoxygenation (recovered to normoxia for 24 h). To further examine the potential molecular regulatory mechanism of hypoxic adaptation, a transcriptome analysis was conducted on the gill of C. hongkongensis under normoxia (N, 72 h), hypoxia (H, 72 h), and reoxygenation (R). After being exposed to hypoxia for 6 h, the T-AOC, glycogen content, and enzyme activities of PK, PFK, and PEPCK in C. hongkongensis were significantly decreased. However, after prolonging the duration of hypoxia exposure for 72 h, the T-AOC, glycogen content, and enzyme activities increased compared to that of 48 h. After 24 h reoxygenation, the T-AOC, glycogen content, and enzyme activity of PK and PFK returned to close to initial levels. In addition, a transcriptome analysis discovered 6097 novel genes by mapping the C. hongkongensis genome with the clean reads. In total, 352 differentially expressed genes (DEGs) were identified in the H vs. N comparison group (235 upregulated and 117 downregulated genes). After recovery to normoxia, 292 DEGs (134 upregulated and 158 downregulated genes) were identified in the R vs. N comparison group, and 632 DEGs were identified (253 upregulated and 379 downregulated genes) in the R vs. H comparison group. The DEGs included some hypoxia-tolerant genes, such as phosphoenolpyruvate carboxykinase (PEPCK), mitochondrial (AOX), tyramine beta-hydroxylase (TBH), superoxide dismutase (SOD), glutathione S-transferase (GST), and egl nine homolog 1 isoform X2 (EGLN1). Additionally, DEGs were significantly enriched in the KEGG pathways that are involved in hypoxia tolerance, including the metabolism of xenobiotics by cytochrome P450 pathways and the HIF-1 signaling pathway. Then, we selected the five hypoxic-tolerant candidate DEGs for real-time quantitative polymerase chain reaction (RT-qPCR) validation, and the results were consistent with the transcriptome sequencing data. These discoveries have increased our understanding of hypoxia tolerance, recovery ability after reoxygenation, and molecular mechanisms governing the responses to hypoxia in C. hongkongensis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信