AMBEA:大型双向图计算中的进取最大双向枚举

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhe Pan;Xu Li;Shuibing He;Xuechen Zhang;Rui Wang;Yunjun Gao;Gang Chen;Xian-He Sun
{"title":"AMBEA:大型双向图计算中的进取最大双向枚举","authors":"Zhe Pan;Xu Li;Shuibing He;Xuechen Zhang;Rui Wang;Yunjun Gao;Gang Chen;Xian-He Sun","doi":"10.1109/TC.2024.3441864","DOIUrl":null,"url":null,"abstract":"Maximal biclique enumeration (MBE) in bipartite graphs is a fundamental problem in data mining with widespread applications. Many recent works solve this problem based on the set-enumeration (SE) tree, which sequentially traverses vertices to generate the enumeration tree nodes representing distinct bicliques, then checks whether these bicliques are maximal or not. However, existing MBE algorithms only expand bicliques with untraversed vertices to ensure distinction, which often necessitate extensive node checks to eliminate non-maximal bicliques, resulting in significant computational overhead during the enumeration process. To address this issue, we propose an aggressive set-enumeration (ASE) tree that aggressively expands all bicliques to their maximal form, thus avoiding costly node checks on non-maximal bicliques. This aggressive enumeration may produce multiple duplicate maximal bicliques, but we efficiently eliminate these duplicates by leveraging the connection between parent and child nodes and conducting low-cost node checking. Additionally, we introduce an aggressive merge-based pruning (AMP) approach that aggressively merges vertices sharing the same local neighbors. This helps prune numerous duplicate node generations caused by subsets of merged vertices. We integrate the AMP approach into the ASE tree, and present the Aggressive Maximal Biclique Enumeration Algorithm (AMBEA). Experimental results show that AMBEA is 1.15\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n to 5.32\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n faster than its closest competitor and exhibits better scalability and parallelization capabilities on larger bipartite graphs.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 12","pages":"2664-2677"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMBEA: Aggressive Maximal Biclique Enumeration in Large Bipartite Graph Computing\",\"authors\":\"Zhe Pan;Xu Li;Shuibing He;Xuechen Zhang;Rui Wang;Yunjun Gao;Gang Chen;Xian-He Sun\",\"doi\":\"10.1109/TC.2024.3441864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximal biclique enumeration (MBE) in bipartite graphs is a fundamental problem in data mining with widespread applications. Many recent works solve this problem based on the set-enumeration (SE) tree, which sequentially traverses vertices to generate the enumeration tree nodes representing distinct bicliques, then checks whether these bicliques are maximal or not. However, existing MBE algorithms only expand bicliques with untraversed vertices to ensure distinction, which often necessitate extensive node checks to eliminate non-maximal bicliques, resulting in significant computational overhead during the enumeration process. To address this issue, we propose an aggressive set-enumeration (ASE) tree that aggressively expands all bicliques to their maximal form, thus avoiding costly node checks on non-maximal bicliques. This aggressive enumeration may produce multiple duplicate maximal bicliques, but we efficiently eliminate these duplicates by leveraging the connection between parent and child nodes and conducting low-cost node checking. Additionally, we introduce an aggressive merge-based pruning (AMP) approach that aggressively merges vertices sharing the same local neighbors. This helps prune numerous duplicate node generations caused by subsets of merged vertices. We integrate the AMP approach into the ASE tree, and present the Aggressive Maximal Biclique Enumeration Algorithm (AMBEA). Experimental results show that AMBEA is 1.15\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n to 5.32\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n faster than its closest competitor and exhibits better scalability and parallelization capabilities on larger bipartite graphs.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 12\",\"pages\":\"2664-2677\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633882/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633882/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

双叉图中的最大双叉枚举(MBE)是数据挖掘中的一个基本问题,应用广泛。最近的许多研究都是基于集合枚举(SE)树来解决这个问题的,SE 树会依次遍历顶点,生成代表不同二叉的枚举树节点,然后检查这些二叉是否最大。然而,现有的 MBE 算法只扩展具有未遍历顶点的二叉以确保区分,这往往需要进行大量节点检查以消除非最大二叉,从而在枚举过程中产生大量计算开销。为了解决这个问题,我们提出了一种积极的集合枚举(ASE)树,它能积极地将所有二叉树扩展为最大形式,从而避免了对非最大二叉树进行代价高昂的节点检查。这种积极的枚举可能会产生多个重复的最大二叉,但我们利用父节点和子节点之间的连接,并进行低成本的节点检查,从而有效地消除了这些重复。此外,我们还引入了一种基于合并的积极剪枝(AMP)方法,该方法会积极合并共享相同本地邻居的顶点。这有助于剪除由合并顶点子集引起的大量重复节点生成。我们将 AMP 方法集成到 ASE 树中,并提出了进取最大双斜枚举算法(AMBEA)。实验结果表明,AMBEA 比其最接近的竞争对手快 1.15 到 5.32 倍,并且在更大的双叉图上表现出更好的可扩展性和并行化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMBEA: Aggressive Maximal Biclique Enumeration in Large Bipartite Graph Computing
Maximal biclique enumeration (MBE) in bipartite graphs is a fundamental problem in data mining with widespread applications. Many recent works solve this problem based on the set-enumeration (SE) tree, which sequentially traverses vertices to generate the enumeration tree nodes representing distinct bicliques, then checks whether these bicliques are maximal or not. However, existing MBE algorithms only expand bicliques with untraversed vertices to ensure distinction, which often necessitate extensive node checks to eliminate non-maximal bicliques, resulting in significant computational overhead during the enumeration process. To address this issue, we propose an aggressive set-enumeration (ASE) tree that aggressively expands all bicliques to their maximal form, thus avoiding costly node checks on non-maximal bicliques. This aggressive enumeration may produce multiple duplicate maximal bicliques, but we efficiently eliminate these duplicates by leveraging the connection between parent and child nodes and conducting low-cost node checking. Additionally, we introduce an aggressive merge-based pruning (AMP) approach that aggressively merges vertices sharing the same local neighbors. This helps prune numerous duplicate node generations caused by subsets of merged vertices. We integrate the AMP approach into the ASE tree, and present the Aggressive Maximal Biclique Enumeration Algorithm (AMBEA). Experimental results show that AMBEA is 1.15 $\times$ to 5.32 $\times$ faster than its closest competitor and exhibits better scalability and parallelization capabilities on larger bipartite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信