学习增强型调度

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Tianming Zhao;Wei Li;Albert Y. Zomaya
{"title":"学习增强型调度","authors":"Tianming Zhao;Wei Li;Albert Y. Zomaya","doi":"10.1109/TC.2024.3441856","DOIUrl":null,"url":null,"abstract":"The recent revival in learning theory has provided us with improved capabilities for accurate predictions. This work contributes to an emerging research agenda of online scheduling with predictions by studying makespan minimization in uniformly related machine non-clairvoyant scheduling with job size predictions. Our task is to design online algorithms that use predictions and have performance guarantees tied to prediction quality. We first propose a simple algorithm-independent prediction error metric to quantify prediction quality. Then we design an offline improved 2-relaxed decision procedure approximating the optimal schedule to effectively use the predictions. With the decision procedure, we propose an online \n<inline-formula><tex-math>$O(\\min\\{\\log\\eta,\\log m\\})$</tex-math></inline-formula>\n-competitive static scheduling algorithm assuming a known prediction error. We use this algorithm to construct a robust \n<inline-formula><tex-math>$O(\\min\\{\\log\\eta,\\log m\\})$</tex-math></inline-formula>\n-competitive static scheduling algorithm that does not assume a known error. Finally, we extend these static scheduling algorithms to address dynamic scheduling where jobs arrive over time. The dynamic scheduling algorithms attain the same competitive ratios as the static ones. The presented algorithms require just moderate predictions to break the \n<inline-formula><tex-math>$\\Omega(\\log m)$</tex-math></inline-formula>\n competitive ratio lower bound, showing the potential of predictions in managing uncertainty.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 11","pages":"2548-2562"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Augmented Scheduling\",\"authors\":\"Tianming Zhao;Wei Li;Albert Y. Zomaya\",\"doi\":\"10.1109/TC.2024.3441856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent revival in learning theory has provided us with improved capabilities for accurate predictions. This work contributes to an emerging research agenda of online scheduling with predictions by studying makespan minimization in uniformly related machine non-clairvoyant scheduling with job size predictions. Our task is to design online algorithms that use predictions and have performance guarantees tied to prediction quality. We first propose a simple algorithm-independent prediction error metric to quantify prediction quality. Then we design an offline improved 2-relaxed decision procedure approximating the optimal schedule to effectively use the predictions. With the decision procedure, we propose an online \\n<inline-formula><tex-math>$O(\\\\min\\\\{\\\\log\\\\eta,\\\\log m\\\\})$</tex-math></inline-formula>\\n-competitive static scheduling algorithm assuming a known prediction error. We use this algorithm to construct a robust \\n<inline-formula><tex-math>$O(\\\\min\\\\{\\\\log\\\\eta,\\\\log m\\\\})$</tex-math></inline-formula>\\n-competitive static scheduling algorithm that does not assume a known error. Finally, we extend these static scheduling algorithms to address dynamic scheduling where jobs arrive over time. The dynamic scheduling algorithms attain the same competitive ratios as the static ones. The presented algorithms require just moderate predictions to break the \\n<inline-formula><tex-math>$\\\\Omega(\\\\log m)$</tex-math></inline-formula>\\n competitive ratio lower bound, showing the potential of predictions in managing uncertainty.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 11\",\"pages\":\"2548-2562\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633879/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633879/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

最近学习理论的复兴为我们提供了更高的准确预测能力。本研究通过研究具有作业大小预测功能的均匀相关机器非千里眼调度中的时间跨度最小化,为具有预测功能的在线调度这一新兴研究议程做出了贡献。我们的任务是设计使用预测的在线算法,并将性能保证与预测质量挂钩。我们首先提出了一个与算法无关的简单预测误差度量来量化预测质量。然后,我们设计了一个离线改进的 2-relaxed 决策程序,该程序近似于最佳时间表,可有效利用预测结果。利用该决策程序,我们提出了一个在线 $O(\min\{log\eta,\log m\})$ 竞争性静态调度算法,假设预测误差已知。我们使用该算法构建了一个鲁棒的$O(\min\{log/eta,\log m\})$竞争性静态调度算法,该算法不假设已知误差。最后,我们扩展了这些静态调度算法,以解决工作随时间到达的动态调度问题。动态调度算法达到了与静态算法相同的竞争比率。所提出的算法只需要适度的预测就能打破$\Omega(\log m)$竞争比下限,这显示了预测在管理不确定性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Augmented Scheduling
The recent revival in learning theory has provided us with improved capabilities for accurate predictions. This work contributes to an emerging research agenda of online scheduling with predictions by studying makespan minimization in uniformly related machine non-clairvoyant scheduling with job size predictions. Our task is to design online algorithms that use predictions and have performance guarantees tied to prediction quality. We first propose a simple algorithm-independent prediction error metric to quantify prediction quality. Then we design an offline improved 2-relaxed decision procedure approximating the optimal schedule to effectively use the predictions. With the decision procedure, we propose an online $O(\min\{\log\eta,\log m\})$ -competitive static scheduling algorithm assuming a known prediction error. We use this algorithm to construct a robust $O(\min\{\log\eta,\log m\})$ -competitive static scheduling algorithm that does not assume a known error. Finally, we extend these static scheduling algorithms to address dynamic scheduling where jobs arrive over time. The dynamic scheduling algorithms attain the same competitive ratios as the static ones. The presented algorithms require just moderate predictions to break the $\Omega(\log m)$ competitive ratio lower bound, showing the potential of predictions in managing uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信