{"title":"采用 22 纳米技术的过剩-1 FinFET 电路的高效单级进位选择加法器","authors":"Jeevan Battini, Sivani Kosaraju","doi":"10.1088/1361-6641/ad6e15","DOIUrl":null,"url":null,"abstract":"Conventional carry select adders (CCSA) have two stages and are followed by multiplexers. CCSAs use ripple carry adders at two stages, which will introduce much delay due to carry propagation. To choose the option between an excess-1 result and a normal result, the CCSA employs a multiplexer. The proposed single-stage carry select adder (SSCSA) has a single stage and uses a new block to generate a normal and excess-1 result based on the readily available inputs (A and B). A novel architecture is developed and specifically designed to improve power dissipation and latency. It relies on a single circuit that produces normal/excess-1 results dependent on input carry. Heterogeneous logic combining CMOS, Dual Value Logic, and Transmission Gate Logic with 22 nm Fin-FETs powers the 1-bit SSCSA circuit. Better circuit regularity is displayed by the 4-bit SSCSA, as it only uses one type of 1-bit SSCSA. With the use of Cadence Virtuoso, ADEL, and ADEXL at 22 nm FinFET technology, all adders, including 4- and 8-bit adders, are designed, simulated, and examined. According to the resulting study, the 4-bit SSCSA outperforms the best adder among existing adders in terms of speed performance and power dissipation by 17.6% and 27.6%, respectively. By comparison with all other designs, SSCSAs outperform them at every corner.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient single-stage carry select adder using excess-1 FinFET circuit in 22 nm technology\",\"authors\":\"Jeevan Battini, Sivani Kosaraju\",\"doi\":\"10.1088/1361-6641/ad6e15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional carry select adders (CCSA) have two stages and are followed by multiplexers. CCSAs use ripple carry adders at two stages, which will introduce much delay due to carry propagation. To choose the option between an excess-1 result and a normal result, the CCSA employs a multiplexer. The proposed single-stage carry select adder (SSCSA) has a single stage and uses a new block to generate a normal and excess-1 result based on the readily available inputs (A and B). A novel architecture is developed and specifically designed to improve power dissipation and latency. It relies on a single circuit that produces normal/excess-1 results dependent on input carry. Heterogeneous logic combining CMOS, Dual Value Logic, and Transmission Gate Logic with 22 nm Fin-FETs powers the 1-bit SSCSA circuit. Better circuit regularity is displayed by the 4-bit SSCSA, as it only uses one type of 1-bit SSCSA. With the use of Cadence Virtuoso, ADEL, and ADEXL at 22 nm FinFET technology, all adders, including 4- and 8-bit adders, are designed, simulated, and examined. According to the resulting study, the 4-bit SSCSA outperforms the best adder among existing adders in terms of speed performance and power dissipation by 17.6% and 27.6%, respectively. By comparison with all other designs, SSCSAs outperform them at every corner.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad6e15\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad6e15","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An efficient single-stage carry select adder using excess-1 FinFET circuit in 22 nm technology
Conventional carry select adders (CCSA) have two stages and are followed by multiplexers. CCSAs use ripple carry adders at two stages, which will introduce much delay due to carry propagation. To choose the option between an excess-1 result and a normal result, the CCSA employs a multiplexer. The proposed single-stage carry select adder (SSCSA) has a single stage and uses a new block to generate a normal and excess-1 result based on the readily available inputs (A and B). A novel architecture is developed and specifically designed to improve power dissipation and latency. It relies on a single circuit that produces normal/excess-1 results dependent on input carry. Heterogeneous logic combining CMOS, Dual Value Logic, and Transmission Gate Logic with 22 nm Fin-FETs powers the 1-bit SSCSA circuit. Better circuit regularity is displayed by the 4-bit SSCSA, as it only uses one type of 1-bit SSCSA. With the use of Cadence Virtuoso, ADEL, and ADEXL at 22 nm FinFET technology, all adders, including 4- and 8-bit adders, are designed, simulated, and examined. According to the resulting study, the 4-bit SSCSA outperforms the best adder among existing adders in terms of speed performance and power dissipation by 17.6% and 27.6%, respectively. By comparison with all other designs, SSCSAs outperform them at every corner.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.