{"title":"用于高灵敏无标记生物传感的新型双栅负电容 TFET","authors":"Ravindra Kumar Maurya, Radhe Gobinda Debnath, Ajeet Kumar Yadav, Brinda Bhowmick","doi":"10.1088/1361-6641/ad6eb0","DOIUrl":null,"url":null,"abstract":"The negative capacitance (NC) tunnel FET (NCTFET) emerges as a viable choice for the development of highly sensitive biosensors. A dual-gate (DG) structure and n+ doped pocket within the NCTFET is introduced in this study to boost biosensor performance and sensitivity. This research offers a comprehensive and comparative analysis of two biosensor designs: the DG-NCTFET and the n+ pocket-doped DG-NCTFET. Both biosensors feature nanogaps on either side of the fixed dielectric, augmenting their biomolecule capture areas. Sensitivity assessments are conducted considering charged and neutral biomolecules with a range of dielectric constants (<italic toggle=\"yes\">k</italic>). The n+ pocket DG-NCTFET exhibits an <italic toggle=\"yes\">I</italic><sub>ON</sub> sensitivity roughly 20 times greater than that of the sensor without a pocket (3.5 × 10<sup>6</sup> for n+ pocket DG-NCTFET and 1.8 × 10<sup>5</sup> for DG-NCTFET), primarily because it conducts current in both vertical and lateral directions. Furthermore, for fully filled nanocavity with neutral biomolecules, the maximum <italic toggle=\"yes\">I</italic><sub>ON</sub>/<italic toggle=\"yes\">I</italic><sub>OFF</sub> sensitivities attained are 1.2 × 10<sup>5</sup> and 2.8 × 10<sup>4</sup> for the n+ pocket DG-NCTFET and conventional DG-NCTFET, respectively. Moreover, this research delves into the impact of steric hindrance and the irregular placement of probes, aiming to grasp the non-ideal traits exhibited by the sensors. Significantly, sensitivity experiences a minimal increase of approximately 6<bold>%–</bold>11% when the fill factor escalates from 40% to 66%. In order to set a standard of comparison, the proposed biosensors are benchmarked against existing literature in terms of sensitivity, affirming their efficacy. The findings indicate that the proposed biosensors represent a promising alternative for detecting a wide range of both charged and neutral biomolecules.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"31 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel dual-gate negative capacitance TFET for highly sensitive label free biosensing\",\"authors\":\"Ravindra Kumar Maurya, Radhe Gobinda Debnath, Ajeet Kumar Yadav, Brinda Bhowmick\",\"doi\":\"10.1088/1361-6641/ad6eb0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The negative capacitance (NC) tunnel FET (NCTFET) emerges as a viable choice for the development of highly sensitive biosensors. A dual-gate (DG) structure and n+ doped pocket within the NCTFET is introduced in this study to boost biosensor performance and sensitivity. This research offers a comprehensive and comparative analysis of two biosensor designs: the DG-NCTFET and the n+ pocket-doped DG-NCTFET. Both biosensors feature nanogaps on either side of the fixed dielectric, augmenting their biomolecule capture areas. Sensitivity assessments are conducted considering charged and neutral biomolecules with a range of dielectric constants (<italic toggle=\\\"yes\\\">k</italic>). The n+ pocket DG-NCTFET exhibits an <italic toggle=\\\"yes\\\">I</italic><sub>ON</sub> sensitivity roughly 20 times greater than that of the sensor without a pocket (3.5 × 10<sup>6</sup> for n+ pocket DG-NCTFET and 1.8 × 10<sup>5</sup> for DG-NCTFET), primarily because it conducts current in both vertical and lateral directions. Furthermore, for fully filled nanocavity with neutral biomolecules, the maximum <italic toggle=\\\"yes\\\">I</italic><sub>ON</sub>/<italic toggle=\\\"yes\\\">I</italic><sub>OFF</sub> sensitivities attained are 1.2 × 10<sup>5</sup> and 2.8 × 10<sup>4</sup> for the n+ pocket DG-NCTFET and conventional DG-NCTFET, respectively. Moreover, this research delves into the impact of steric hindrance and the irregular placement of probes, aiming to grasp the non-ideal traits exhibited by the sensors. Significantly, sensitivity experiences a minimal increase of approximately 6<bold>%–</bold>11% when the fill factor escalates from 40% to 66%. In order to set a standard of comparison, the proposed biosensors are benchmarked against existing literature in terms of sensitivity, affirming their efficacy. The findings indicate that the proposed biosensors represent a promising alternative for detecting a wide range of both charged and neutral biomolecules.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad6eb0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad6eb0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel dual-gate negative capacitance TFET for highly sensitive label free biosensing
The negative capacitance (NC) tunnel FET (NCTFET) emerges as a viable choice for the development of highly sensitive biosensors. A dual-gate (DG) structure and n+ doped pocket within the NCTFET is introduced in this study to boost biosensor performance and sensitivity. This research offers a comprehensive and comparative analysis of two biosensor designs: the DG-NCTFET and the n+ pocket-doped DG-NCTFET. Both biosensors feature nanogaps on either side of the fixed dielectric, augmenting their biomolecule capture areas. Sensitivity assessments are conducted considering charged and neutral biomolecules with a range of dielectric constants (k). The n+ pocket DG-NCTFET exhibits an ION sensitivity roughly 20 times greater than that of the sensor without a pocket (3.5 × 106 for n+ pocket DG-NCTFET and 1.8 × 105 for DG-NCTFET), primarily because it conducts current in both vertical and lateral directions. Furthermore, for fully filled nanocavity with neutral biomolecules, the maximum ION/IOFF sensitivities attained are 1.2 × 105 and 2.8 × 104 for the n+ pocket DG-NCTFET and conventional DG-NCTFET, respectively. Moreover, this research delves into the impact of steric hindrance and the irregular placement of probes, aiming to grasp the non-ideal traits exhibited by the sensors. Significantly, sensitivity experiences a minimal increase of approximately 6%–11% when the fill factor escalates from 40% to 66%. In order to set a standard of comparison, the proposed biosensors are benchmarked against existing literature in terms of sensitivity, affirming their efficacy. The findings indicate that the proposed biosensors represent a promising alternative for detecting a wide range of both charged and neutral biomolecules.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.