在单片式三维集成电路设计中实现堆叠纳米氧化物通道晶体管的设计-技术协同优化

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jungyoun Kwak;Gihun Choe;Shimeng Yu
{"title":"在单片式三维集成电路设计中实现堆叠纳米氧化物通道晶体管的设计-技术协同优化","authors":"Jungyoun Kwak;Gihun Choe;Shimeng Yu","doi":"10.1109/TNANO.2024.3447020","DOIUrl":null,"url":null,"abstract":"A back-end-of-line (BEOL)-compatible stacked nanosheet tungsten doped indium oxide (IWO) n-type channel transistor is proposed for complementary logic gate operation with front-end-of-line (FEOL) p-type Si transistors. The proposed device structure ensures high on current density (Ion > 544 μA/μm) at V\n<sub>GS</sub>\n = 1 V, compensating for lower electron mobility in IWO (than Si). A comprehensive process flow is proposed to prove its integration potential. A custom monolithic 3D (M3D) process-design-kit (PDK) and standard cell library are developed for design-technology co-optimization (DTCO), examining the power, performance, and area (PPA) trade-offs in representative integrated circuits with ∼ 0.8 million of gates. The Verilog-to-GDS synthesis results show a 47% average area reduction in M3D circuits while maintaining a similar energy-delay-product (EDP) compared to the conventional 2D circuits.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"622-628"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design-Technology Co-Optimization for Stacked Nanosheet Oxide Channel Transistors in Monolithic 3D Integrated Circuit Design\",\"authors\":\"Jungyoun Kwak;Gihun Choe;Shimeng Yu\",\"doi\":\"10.1109/TNANO.2024.3447020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A back-end-of-line (BEOL)-compatible stacked nanosheet tungsten doped indium oxide (IWO) n-type channel transistor is proposed for complementary logic gate operation with front-end-of-line (FEOL) p-type Si transistors. The proposed device structure ensures high on current density (Ion > 544 μA/μm) at V\\n<sub>GS</sub>\\n = 1 V, compensating for lower electron mobility in IWO (than Si). A comprehensive process flow is proposed to prove its integration potential. A custom monolithic 3D (M3D) process-design-kit (PDK) and standard cell library are developed for design-technology co-optimization (DTCO), examining the power, performance, and area (PPA) trade-offs in representative integrated circuits with ∼ 0.8 million of gates. The Verilog-to-GDS synthesis results show a 47% average area reduction in M3D circuits while maintaining a similar energy-delay-product (EDP) compared to the conventional 2D circuits.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"622-628\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643357/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643357/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种与后端线(BEOL)兼容的叠层纳米片掺钨氧化铟(IWO)n 型沟道晶体管,用于与前端线(FEOL)p 型硅晶体管进行互补逻辑门操作。所提出的器件结构可确保在 VGS = 1 V 时具有较高的导通电流密度(Ion > 544 μA/μm),从而弥补了 IWO(与硅相比)较低的电子迁移率。为证明其集成潜力,我们提出了一套全面的工艺流程。为设计-技术协同优化(DTCO)开发了定制的单片三维(M3D)工艺设计工具包(PDK)和标准单元库,检查了 0.8 百万∼ 门的代表性集成电路的功率、性能和面积(PPA)权衡。Verilog 到 GDS 的综合结果表明,与传统的二维电路相比,M3D 电路的平均面积减少了 47%,同时保持了类似的能量-延迟-产品(EDP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design-Technology Co-Optimization for Stacked Nanosheet Oxide Channel Transistors in Monolithic 3D Integrated Circuit Design
A back-end-of-line (BEOL)-compatible stacked nanosheet tungsten doped indium oxide (IWO) n-type channel transistor is proposed for complementary logic gate operation with front-end-of-line (FEOL) p-type Si transistors. The proposed device structure ensures high on current density (Ion > 544 μA/μm) at V GS = 1 V, compensating for lower electron mobility in IWO (than Si). A comprehensive process flow is proposed to prove its integration potential. A custom monolithic 3D (M3D) process-design-kit (PDK) and standard cell library are developed for design-technology co-optimization (DTCO), examining the power, performance, and area (PPA) trade-offs in representative integrated circuits with ∼ 0.8 million of gates. The Verilog-to-GDS synthesis results show a 47% average area reduction in M3D circuits while maintaining a similar energy-delay-product (EDP) compared to the conventional 2D circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信