{"title":"开放无线接入网络中 eMBB-URLLC 复用的分布式学习框架","authors":"Madyan Alsenwi;Eva Lagunas;Symeon Chatzinotas","doi":"10.1109/TNSM.2024.3451295","DOIUrl":null,"url":null,"abstract":"Next-generation (NextG) cellular networks are expected to evolve towards virtualization and openness, incorporating reprogrammable components that facilitate intelligence and real-time analytics. This paper builds on these innovations to address the network slicing problem in multi-cell open radio access wireless networks, focusing on two key services: enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). A stochastic resource allocation problem is formulated with the goal of balancing the average eMBB data rate and its variance, while ensuring URLLC constraints. A distributed learning framework based on the Deep Reinforcement Learning (DRL) technique is developed following the Open Radio Access Networks (O-RAN) architectures to solve the formulated optimization problem. The proposed learning approach enables training a global machine learning model at a central cloud server and sharing it with edge servers for executions. Specifically, deep learning agents are distributed at network edge servers and embedded within the Near-Real-Time Radio access network Intelligent Controller (Near-RT RIC) to collect network information and perform online executions. A global deep learning model is trained by a central training engine embedded within the Non-Real-Time RIC (Non-RT RIC) at the central server using received data from edge servers. The performed simulation results validate the efficacy of the proposed algorithm in achieving URLLC constraints while maintaining the eMBB Quality of Service (QoS).","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 5","pages":"5718-5732"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Learning Framework for eMBB-URLLC Multiplexing in Open Radio Access Networks\",\"authors\":\"Madyan Alsenwi;Eva Lagunas;Symeon Chatzinotas\",\"doi\":\"10.1109/TNSM.2024.3451295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next-generation (NextG) cellular networks are expected to evolve towards virtualization and openness, incorporating reprogrammable components that facilitate intelligence and real-time analytics. This paper builds on these innovations to address the network slicing problem in multi-cell open radio access wireless networks, focusing on two key services: enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). A stochastic resource allocation problem is formulated with the goal of balancing the average eMBB data rate and its variance, while ensuring URLLC constraints. A distributed learning framework based on the Deep Reinforcement Learning (DRL) technique is developed following the Open Radio Access Networks (O-RAN) architectures to solve the formulated optimization problem. The proposed learning approach enables training a global machine learning model at a central cloud server and sharing it with edge servers for executions. Specifically, deep learning agents are distributed at network edge servers and embedded within the Near-Real-Time Radio access network Intelligent Controller (Near-RT RIC) to collect network information and perform online executions. A global deep learning model is trained by a central training engine embedded within the Non-Real-Time RIC (Non-RT RIC) at the central server using received data from edge servers. The performed simulation results validate the efficacy of the proposed algorithm in achieving URLLC constraints while maintaining the eMBB Quality of Service (QoS).\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 5\",\"pages\":\"5718-5732\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654339/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Distributed Learning Framework for eMBB-URLLC Multiplexing in Open Radio Access Networks
Next-generation (NextG) cellular networks are expected to evolve towards virtualization and openness, incorporating reprogrammable components that facilitate intelligence and real-time analytics. This paper builds on these innovations to address the network slicing problem in multi-cell open radio access wireless networks, focusing on two key services: enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low Latency Communications (URLLC). A stochastic resource allocation problem is formulated with the goal of balancing the average eMBB data rate and its variance, while ensuring URLLC constraints. A distributed learning framework based on the Deep Reinforcement Learning (DRL) technique is developed following the Open Radio Access Networks (O-RAN) architectures to solve the formulated optimization problem. The proposed learning approach enables training a global machine learning model at a central cloud server and sharing it with edge servers for executions. Specifically, deep learning agents are distributed at network edge servers and embedded within the Near-Real-Time Radio access network Intelligent Controller (Near-RT RIC) to collect network information and perform online executions. A global deep learning model is trained by a central training engine embedded within the Non-Real-Time RIC (Non-RT RIC) at the central server using received data from edge servers. The performed simulation results validate the efficacy of the proposed algorithm in achieving URLLC constraints while maintaining the eMBB Quality of Service (QoS).
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.