Huanzhuo Wu;Jia He;Jiakang Weng;Giang T. Nguyen;Martin Reisslein;Frank H. P. Fitzek
{"title":"OptCDU:优化 COIN 计算数据单元大小","authors":"Huanzhuo Wu;Jia He;Jiakang Weng;Giang T. Nguyen;Martin Reisslein;Frank H. P. Fitzek","doi":"10.1109/TNSM.2024.3452485","DOIUrl":null,"url":null,"abstract":"Computing in the Network (COIN) has the potential to reduce the data traffic and thus the end-to-end latencies for data-rich services. Existing COIN studies have neglected the impact of the size of the data unit that the network nodes compute on. However, similar to the impact of the protocol data unit (packet) size in conventional store-and-forward packet-switching networks, the Computing Data Unit (CDU) size is an elementary parameter that strongly influences the COIN dynamics. We model the end-to-end service time consisting of the network transport delays (for data transmission and link propagation), the loading delays of the data into the computing units, and the computing delays in the network nodes. We derive the optimal CDU size that minimizes the end-to-end service time with gradient descent. We evaluate the impact of the CDU sizing on the amount of data transmitted over the network links and the end-to-end service time for computing the convolutional neural network (CNN) based Yoho and a Deep Neural Network (DNN) based Multi-Layer Perceptron (MLP). We distribute the Yoho and MLP neural modules over up to five network nodes. Our emulation evaluations indicate that COIN strongly reduces the amount of network traffic after the first few computing nodes. Also, the CDU size optimization has a strong impact on the end-to-end service time; whereby, CDU sizes that are too small or too large can double the service time. Our emulations validate that our gradient descent minimization correctly identifies the optimal CDU size.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6095-6111"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OptCDU: Optimizing the Computing Data Unit Size for COIN\",\"authors\":\"Huanzhuo Wu;Jia He;Jiakang Weng;Giang T. Nguyen;Martin Reisslein;Frank H. P. Fitzek\",\"doi\":\"10.1109/TNSM.2024.3452485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing in the Network (COIN) has the potential to reduce the data traffic and thus the end-to-end latencies for data-rich services. Existing COIN studies have neglected the impact of the size of the data unit that the network nodes compute on. However, similar to the impact of the protocol data unit (packet) size in conventional store-and-forward packet-switching networks, the Computing Data Unit (CDU) size is an elementary parameter that strongly influences the COIN dynamics. We model the end-to-end service time consisting of the network transport delays (for data transmission and link propagation), the loading delays of the data into the computing units, and the computing delays in the network nodes. We derive the optimal CDU size that minimizes the end-to-end service time with gradient descent. We evaluate the impact of the CDU sizing on the amount of data transmitted over the network links and the end-to-end service time for computing the convolutional neural network (CNN) based Yoho and a Deep Neural Network (DNN) based Multi-Layer Perceptron (MLP). We distribute the Yoho and MLP neural modules over up to five network nodes. Our emulation evaluations indicate that COIN strongly reduces the amount of network traffic after the first few computing nodes. Also, the CDU size optimization has a strong impact on the end-to-end service time; whereby, CDU sizes that are too small or too large can double the service time. Our emulations validate that our gradient descent minimization correctly identifies the optimal CDU size.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6095-6111\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660516/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10660516/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
OptCDU: Optimizing the Computing Data Unit Size for COIN
Computing in the Network (COIN) has the potential to reduce the data traffic and thus the end-to-end latencies for data-rich services. Existing COIN studies have neglected the impact of the size of the data unit that the network nodes compute on. However, similar to the impact of the protocol data unit (packet) size in conventional store-and-forward packet-switching networks, the Computing Data Unit (CDU) size is an elementary parameter that strongly influences the COIN dynamics. We model the end-to-end service time consisting of the network transport delays (for data transmission and link propagation), the loading delays of the data into the computing units, and the computing delays in the network nodes. We derive the optimal CDU size that minimizes the end-to-end service time with gradient descent. We evaluate the impact of the CDU sizing on the amount of data transmitted over the network links and the end-to-end service time for computing the convolutional neural network (CNN) based Yoho and a Deep Neural Network (DNN) based Multi-Layer Perceptron (MLP). We distribute the Yoho and MLP neural modules over up to five network nodes. Our emulation evaluations indicate that COIN strongly reduces the amount of network traffic after the first few computing nodes. Also, the CDU size optimization has a strong impact on the end-to-end service time; whereby, CDU sizes that are too small or too large can double the service time. Our emulations validate that our gradient descent minimization correctly identifies the optimal CDU size.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.