{"title":"小型世界无人机互联网络中的高能效和延迟感知数据路由选择","authors":"Sreenivasa Reddy Yeduri;Sindhusha Jeeru;Om Jee Pandey;Linga Reddy Cenkeramaddi","doi":"10.1109/TNSM.2024.3452414","DOIUrl":null,"url":null,"abstract":"Recently, drones have attracted considerable attention for sensing hostile areas. Multiple drones are deployed to communicate and coordinate sensing and data transfer in the Internet of Drones (IoD) network. Traditionally, multi-hop routing is employed for communication over long distances to increase the network’s lifetime. However, multi-hop routing over large-scale networks leads to energy imbalance and higher data latency. Motivated by this, in this paper, a novel framework of energy-efficient and latency-aware data routing is proposed for Small-World (SW)-IoD networks. We started with an optimization problem formulation in terms of network delay, energy consumption, and reliability. Then, the formulated mixed integer problem is solved by introducing the Small-World Characters (SWC) into the conventional IoD network to form the SW-IoD network. Here, the proposed framework introduces SWC by removing a few existing edges with the least edge weight from the traditional network and introducing the same number of long-range edges with the highest edge weight. We present the simulation results corresponding to packet delivery ratio, network lifetime, and network delay for the performance comparison of the proposed framework with state-of-the-art approaches such as the conventional SWC method, LEACH, Modified LEACH, Canonical Particle Multi-Swarm (PMS) method, and conventional shortest path routing algorithm. We also analyze the effect of the location of the ground control station, the velocity of the drones, and the different heights of layers on the performance of the proposed framework. Through experiments, the superiority of the proposed method is proven to be better when compared to other methods. Finally, the performance evaluation of the proposed model is tested on a network simulator (NS3).","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6555-6565"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient and Latency-Aware Data Routing in Small-World Internet of Drone Networks\",\"authors\":\"Sreenivasa Reddy Yeduri;Sindhusha Jeeru;Om Jee Pandey;Linga Reddy Cenkeramaddi\",\"doi\":\"10.1109/TNSM.2024.3452414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, drones have attracted considerable attention for sensing hostile areas. Multiple drones are deployed to communicate and coordinate sensing and data transfer in the Internet of Drones (IoD) network. Traditionally, multi-hop routing is employed for communication over long distances to increase the network’s lifetime. However, multi-hop routing over large-scale networks leads to energy imbalance and higher data latency. Motivated by this, in this paper, a novel framework of energy-efficient and latency-aware data routing is proposed for Small-World (SW)-IoD networks. We started with an optimization problem formulation in terms of network delay, energy consumption, and reliability. Then, the formulated mixed integer problem is solved by introducing the Small-World Characters (SWC) into the conventional IoD network to form the SW-IoD network. Here, the proposed framework introduces SWC by removing a few existing edges with the least edge weight from the traditional network and introducing the same number of long-range edges with the highest edge weight. We present the simulation results corresponding to packet delivery ratio, network lifetime, and network delay for the performance comparison of the proposed framework with state-of-the-art approaches such as the conventional SWC method, LEACH, Modified LEACH, Canonical Particle Multi-Swarm (PMS) method, and conventional shortest path routing algorithm. We also analyze the effect of the location of the ground control station, the velocity of the drones, and the different heights of layers on the performance of the proposed framework. Through experiments, the superiority of the proposed method is proven to be better when compared to other methods. Finally, the performance evaluation of the proposed model is tested on a network simulator (NS3).\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6555-6565\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660500/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10660500/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Energy-Efficient and Latency-Aware Data Routing in Small-World Internet of Drone Networks
Recently, drones have attracted considerable attention for sensing hostile areas. Multiple drones are deployed to communicate and coordinate sensing and data transfer in the Internet of Drones (IoD) network. Traditionally, multi-hop routing is employed for communication over long distances to increase the network’s lifetime. However, multi-hop routing over large-scale networks leads to energy imbalance and higher data latency. Motivated by this, in this paper, a novel framework of energy-efficient and latency-aware data routing is proposed for Small-World (SW)-IoD networks. We started with an optimization problem formulation in terms of network delay, energy consumption, and reliability. Then, the formulated mixed integer problem is solved by introducing the Small-World Characters (SWC) into the conventional IoD network to form the SW-IoD network. Here, the proposed framework introduces SWC by removing a few existing edges with the least edge weight from the traditional network and introducing the same number of long-range edges with the highest edge weight. We present the simulation results corresponding to packet delivery ratio, network lifetime, and network delay for the performance comparison of the proposed framework with state-of-the-art approaches such as the conventional SWC method, LEACH, Modified LEACH, Canonical Particle Multi-Swarm (PMS) method, and conventional shortest path routing algorithm. We also analyze the effect of the location of the ground control station, the velocity of the drones, and the different heights of layers on the performance of the proposed framework. Through experiments, the superiority of the proposed method is proven to be better when compared to other methods. Finally, the performance evaluation of the proposed model is tested on a network simulator (NS3).
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.