{"title":"SAC-PP:为移动边缘计算联合优化隐私保护和计算卸载","authors":"Shigen Shen;Xuanbin Hao;Zhengjun Gao;Guowen Wu;Yizhou Shen;Hong Zhang;Qiying Cao;Shui Yu","doi":"10.1109/TNSM.2024.3447753","DOIUrl":null,"url":null,"abstract":"The emergence of mobile edge computing (MEC) imposes an unprecedented pressure on privacy protection, although it helps the improvement of computation performance including energy consumption and computation delay by computation offloading. To this end, we concern about the privacy protection in the MEC system with a curious edge server. We present a deep reinforcement learning (DRL)-driven computation offloading strategy designed to concurrently optimize privacy protection and computation cost. We investigate the potential privacy breaches resulting from offloading patterns, propose an attack model of privacy theft, and correspondingly define an analytical measure to assess privacy protection levels. In pursuit of an ideal computation offloading approach, we propose an algorithm, SAC-PP, which integrates actor-critic, off-policy, and maximum entropy to improve the efficiency of learning processes. We explore the sensitivity of SAC-PP to hyperparameters and the results demonstrate its stability, which facilitates application and deployment in real environments. The relationship between privacy protection and computation cost is analyzed with different reward factors. Compared with benchmarks, the empirical results from simulations illustrate that the proposed computation offloading approach exhibits enhanced learning speed and overall performance.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6190-6203"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAC-PP: Jointly Optimizing Privacy Protection and Computation Offloading for Mobile Edge Computing\",\"authors\":\"Shigen Shen;Xuanbin Hao;Zhengjun Gao;Guowen Wu;Yizhou Shen;Hong Zhang;Qiying Cao;Shui Yu\",\"doi\":\"10.1109/TNSM.2024.3447753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of mobile edge computing (MEC) imposes an unprecedented pressure on privacy protection, although it helps the improvement of computation performance including energy consumption and computation delay by computation offloading. To this end, we concern about the privacy protection in the MEC system with a curious edge server. We present a deep reinforcement learning (DRL)-driven computation offloading strategy designed to concurrently optimize privacy protection and computation cost. We investigate the potential privacy breaches resulting from offloading patterns, propose an attack model of privacy theft, and correspondingly define an analytical measure to assess privacy protection levels. In pursuit of an ideal computation offloading approach, we propose an algorithm, SAC-PP, which integrates actor-critic, off-policy, and maximum entropy to improve the efficiency of learning processes. We explore the sensitivity of SAC-PP to hyperparameters and the results demonstrate its stability, which facilitates application and deployment in real environments. The relationship between privacy protection and computation cost is analyzed with different reward factors. Compared with benchmarks, the empirical results from simulations illustrate that the proposed computation offloading approach exhibits enhanced learning speed and overall performance.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6190-6203\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643594/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643594/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SAC-PP: Jointly Optimizing Privacy Protection and Computation Offloading for Mobile Edge Computing
The emergence of mobile edge computing (MEC) imposes an unprecedented pressure on privacy protection, although it helps the improvement of computation performance including energy consumption and computation delay by computation offloading. To this end, we concern about the privacy protection in the MEC system with a curious edge server. We present a deep reinforcement learning (DRL)-driven computation offloading strategy designed to concurrently optimize privacy protection and computation cost. We investigate the potential privacy breaches resulting from offloading patterns, propose an attack model of privacy theft, and correspondingly define an analytical measure to assess privacy protection levels. In pursuit of an ideal computation offloading approach, we propose an algorithm, SAC-PP, which integrates actor-critic, off-policy, and maximum entropy to improve the efficiency of learning processes. We explore the sensitivity of SAC-PP to hyperparameters and the results demonstrate its stability, which facilitates application and deployment in real environments. The relationship between privacy protection and computation cost is analyzed with different reward factors. Compared with benchmarks, the empirical results from simulations illustrate that the proposed computation offloading approach exhibits enhanced learning speed and overall performance.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.