利用集合树缓解恶意 URL 检测器中的标签翻转攻击

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ehsan Nowroozi;Nada Jadalla;Samaneh Ghelichkhani;Alireza Jolfaei
{"title":"利用集合树缓解恶意 URL 检测器中的标签翻转攻击","authors":"Ehsan Nowroozi;Nada Jadalla;Samaneh Ghelichkhani;Alireza Jolfaei","doi":"10.1109/TNSM.2024.3447411","DOIUrl":null,"url":null,"abstract":"Malicious URLs present significant threats to businesses, such as transportation and banking, causing disruptions in business operations. It is essential to identify these URLs; however, existing Machine Learning models are vulnerable to backdoor attacks. These attacks involve manipulating a small portion of the training data labels, such as Label Flipping, which can lead to misclassification. Therefore, it is crucial to incorporate defense mechanisms into machine-learning models to protect against such attacks. The focus of this study is on backdoor attacks in the context of URL detection using ensemble trees. By illuminating the motivations behind such attacks, highlighting the roles of attackers, and emphasizing the critical importance of effective defense strategies, this paper contributes to the ongoing efforts to fortify machine-learning models against adversarial threats within the machine-learning domain in network security. We propose an innovative alarm system that detects the presence of poisoned labels and a defense mechanism designed to uncover the original class labels with the aim of mitigating backdoor attacks on ensemble tree classifiers. We conducted a case study using the Alexa and Phishing Site URL datasets and showed that label-flipping attacks can be addressed using our proposed defense mechanism. Our experimental results prove that the Label Flipping attack achieved an Attack Success Rate between 50-65% within 2-5%, and the innovative defense method successfully detected poisoned labels with an accuracy of up to 100%.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6875-6884"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Label Flipping Attacks in Malicious URL Detectors Using Ensemble Trees\",\"authors\":\"Ehsan Nowroozi;Nada Jadalla;Samaneh Ghelichkhani;Alireza Jolfaei\",\"doi\":\"10.1109/TNSM.2024.3447411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious URLs present significant threats to businesses, such as transportation and banking, causing disruptions in business operations. It is essential to identify these URLs; however, existing Machine Learning models are vulnerable to backdoor attacks. These attacks involve manipulating a small portion of the training data labels, such as Label Flipping, which can lead to misclassification. Therefore, it is crucial to incorporate defense mechanisms into machine-learning models to protect against such attacks. The focus of this study is on backdoor attacks in the context of URL detection using ensemble trees. By illuminating the motivations behind such attacks, highlighting the roles of attackers, and emphasizing the critical importance of effective defense strategies, this paper contributes to the ongoing efforts to fortify machine-learning models against adversarial threats within the machine-learning domain in network security. We propose an innovative alarm system that detects the presence of poisoned labels and a defense mechanism designed to uncover the original class labels with the aim of mitigating backdoor attacks on ensemble tree classifiers. We conducted a case study using the Alexa and Phishing Site URL datasets and showed that label-flipping attacks can be addressed using our proposed defense mechanism. Our experimental results prove that the Label Flipping attack achieved an Attack Success Rate between 50-65% within 2-5%, and the innovative defense method successfully detected poisoned labels with an accuracy of up to 100%.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6875-6884\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646207/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10646207/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Label Flipping Attacks in Malicious URL Detectors Using Ensemble Trees
Malicious URLs present significant threats to businesses, such as transportation and banking, causing disruptions in business operations. It is essential to identify these URLs; however, existing Machine Learning models are vulnerable to backdoor attacks. These attacks involve manipulating a small portion of the training data labels, such as Label Flipping, which can lead to misclassification. Therefore, it is crucial to incorporate defense mechanisms into machine-learning models to protect against such attacks. The focus of this study is on backdoor attacks in the context of URL detection using ensemble trees. By illuminating the motivations behind such attacks, highlighting the roles of attackers, and emphasizing the critical importance of effective defense strategies, this paper contributes to the ongoing efforts to fortify machine-learning models against adversarial threats within the machine-learning domain in network security. We propose an innovative alarm system that detects the presence of poisoned labels and a defense mechanism designed to uncover the original class labels with the aim of mitigating backdoor attacks on ensemble tree classifiers. We conducted a case study using the Alexa and Phishing Site URL datasets and showed that label-flipping attacks can be addressed using our proposed defense mechanism. Our experimental results prove that the Label Flipping attack achieved an Attack Success Rate between 50-65% within 2-5%, and the innovative defense method successfully detected poisoned labels with an accuracy of up to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信