{"title":"数据中心网络中基于深度强化学习的超低开销轻量级自动 ECN 调整","authors":"Jinbin Hu;Zikai Zhou;Jin Zhang","doi":"10.1109/TNSM.2024.3450596","DOIUrl":null,"url":null,"abstract":"In modern datacenter networks (DCNs), mainstream congestion control (CC) mechanisms essentially rely on Explicit Congestion Notification (ECN) to reflect congestion. The traditional static ECN threshold performs poorly under dynamic scenarios, and setting a proper ECN threshold under various traffic patterns is challenging and time-consuming. The recently proposed reinforcement learning (RL) based ECN Tuning algorithm (ACC) consumes a large number of computational resources, making it difficult to deploy on switches. In this paper, we present a lightweight and hierarchical automated ECN tuning algorithm called LAECN, which can fully exploit the performance benefits of deep reinforcement learning with ultra-low overhead. The simulation results show that LAECN improves performance significantly by reducing latency and increasing throughput in stable network conditions, and also shows consistent high performance in small flows network environments. For example, LAECN effectively improves throughput by up to 47%, 34%, 32% and 24% over DCQCN, TIMELY, HPCC and ACC, respectively.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6398-6408"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Automatic ECN Tuning Based on Deep Reinforcement Learning With Ultra-Low Overhead in Datacenter Networks\",\"authors\":\"Jinbin Hu;Zikai Zhou;Jin Zhang\",\"doi\":\"10.1109/TNSM.2024.3450596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern datacenter networks (DCNs), mainstream congestion control (CC) mechanisms essentially rely on Explicit Congestion Notification (ECN) to reflect congestion. The traditional static ECN threshold performs poorly under dynamic scenarios, and setting a proper ECN threshold under various traffic patterns is challenging and time-consuming. The recently proposed reinforcement learning (RL) based ECN Tuning algorithm (ACC) consumes a large number of computational resources, making it difficult to deploy on switches. In this paper, we present a lightweight and hierarchical automated ECN tuning algorithm called LAECN, which can fully exploit the performance benefits of deep reinforcement learning with ultra-low overhead. The simulation results show that LAECN improves performance significantly by reducing latency and increasing throughput in stable network conditions, and also shows consistent high performance in small flows network environments. For example, LAECN effectively improves throughput by up to 47%, 34%, 32% and 24% over DCQCN, TIMELY, HPCC and ACC, respectively.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6398-6408\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10649006/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649006/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Lightweight Automatic ECN Tuning Based on Deep Reinforcement Learning With Ultra-Low Overhead in Datacenter Networks
In modern datacenter networks (DCNs), mainstream congestion control (CC) mechanisms essentially rely on Explicit Congestion Notification (ECN) to reflect congestion. The traditional static ECN threshold performs poorly under dynamic scenarios, and setting a proper ECN threshold under various traffic patterns is challenging and time-consuming. The recently proposed reinforcement learning (RL) based ECN Tuning algorithm (ACC) consumes a large number of computational resources, making it difficult to deploy on switches. In this paper, we present a lightweight and hierarchical automated ECN tuning algorithm called LAECN, which can fully exploit the performance benefits of deep reinforcement learning with ultra-low overhead. The simulation results show that LAECN improves performance significantly by reducing latency and increasing throughput in stable network conditions, and also shows consistent high performance in small flows network environments. For example, LAECN effectively improves throughput by up to 47%, 34%, 32% and 24% over DCQCN, TIMELY, HPCC and ACC, respectively.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.