SAR:数据中心网络中具有微脉冲预测功能的接收器驱动传输协议

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jin Ye;Tiantian Yu;Zhaoyi Li;Jiawei Huang
{"title":"SAR:数据中心网络中具有微脉冲预测功能的接收器驱动传输协议","authors":"Jin Ye;Tiantian Yu;Zhaoyi Li;Jiawei Huang","doi":"10.1109/TNSM.2024.3450597","DOIUrl":null,"url":null,"abstract":"In recent years, motivated by new datacenter applications and the well-known shortcomings of TCP in data center, many receiver-driven transport protocols have been proposed to provide ultra-low latency and zero packet loss by using the proactive congestion control. However, in the scenario of mixed short and long flows, the short flows with ON/OFF pattern generate micro-burst traffic, which significantly deteriorates the performance of existing receiver-driven transport protocols. Firstly, when the short flows turn into ON mode, the long flows cannot immediately concede bandwidth to the short ones, resulting in queue buildup and even packet loss. Secondly, when the short flows change from ON to OFF mode, the released bandwidth cannot be fully utilized by the long flows, leading to serious bandwidth waste. To address these issues, we propose a new receiver-driven transport protocol, called SAR, which predicts the micro burst generated by short flows and adjusts the sending rate of long flows accordingly. With the aid of micro-burst prediction mechanism, SAR mitigates the bandwidth competition due to the arrival of short flows, and alleviates the bandwidth waste when the short flows leave. The testbed and NS2 simulation experiments demonstrate that SAR reduces the average flow completion time (AFCT) by up to 66% compared to typical receiver-driven transport protocols.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6409-6422"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR: Receiver-Driven Transport Protocol With Micro-Burst Prediction in Data Center Networks\",\"authors\":\"Jin Ye;Tiantian Yu;Zhaoyi Li;Jiawei Huang\",\"doi\":\"10.1109/TNSM.2024.3450597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, motivated by new datacenter applications and the well-known shortcomings of TCP in data center, many receiver-driven transport protocols have been proposed to provide ultra-low latency and zero packet loss by using the proactive congestion control. However, in the scenario of mixed short and long flows, the short flows with ON/OFF pattern generate micro-burst traffic, which significantly deteriorates the performance of existing receiver-driven transport protocols. Firstly, when the short flows turn into ON mode, the long flows cannot immediately concede bandwidth to the short ones, resulting in queue buildup and even packet loss. Secondly, when the short flows change from ON to OFF mode, the released bandwidth cannot be fully utilized by the long flows, leading to serious bandwidth waste. To address these issues, we propose a new receiver-driven transport protocol, called SAR, which predicts the micro burst generated by short flows and adjusts the sending rate of long flows accordingly. With the aid of micro-burst prediction mechanism, SAR mitigates the bandwidth competition due to the arrival of short flows, and alleviates the bandwidth waste when the short flows leave. The testbed and NS2 simulation experiments demonstrate that SAR reduces the average flow completion time (AFCT) by up to 66% compared to typical receiver-driven transport protocols.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6409-6422\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10649002/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649002/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR: Receiver-Driven Transport Protocol With Micro-Burst Prediction in Data Center Networks
In recent years, motivated by new datacenter applications and the well-known shortcomings of TCP in data center, many receiver-driven transport protocols have been proposed to provide ultra-low latency and zero packet loss by using the proactive congestion control. However, in the scenario of mixed short and long flows, the short flows with ON/OFF pattern generate micro-burst traffic, which significantly deteriorates the performance of existing receiver-driven transport protocols. Firstly, when the short flows turn into ON mode, the long flows cannot immediately concede bandwidth to the short ones, resulting in queue buildup and even packet loss. Secondly, when the short flows change from ON to OFF mode, the released bandwidth cannot be fully utilized by the long flows, leading to serious bandwidth waste. To address these issues, we propose a new receiver-driven transport protocol, called SAR, which predicts the micro burst generated by short flows and adjusts the sending rate of long flows accordingly. With the aid of micro-burst prediction mechanism, SAR mitigates the bandwidth competition due to the arrival of short flows, and alleviates the bandwidth waste when the short flows leave. The testbed and NS2 simulation experiments demonstrate that SAR reduces the average flow completion time (AFCT) by up to 66% compared to typical receiver-driven transport protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信