{"title":"尺寸对三维 TSV 阵列界面疲劳特性的影响:热、电、结构全耦合分析","authors":"Kaihong Hou;Zhengwei Fan;Shufeng Zhang;Yashun Wang;Xun Chen","doi":"10.1109/TDMR.2024.3453923","DOIUrl":null,"url":null,"abstract":"As the interconnected structure of 3D chip, through-silicon via undertakes the key functions in energy transmission, mechanical support and signal transmission of 3D chip. With the increasing of TSV interconnection density, the reliability of TSV is becoming increasingly prominent, and the slight variation of TSV dimension may exert severe impact on the fatigue life of the TSV array. In this study, a typical double-layer TSV interconnected 3D array is built to carried out the multi-interface fatigue analysis under thermoelectric structure coupling field, the influence of different dimension of the TSV interconnected array on the fatigue life of various interface and whole thermoelectric circuit are deeply investigated. Results shows that: 1) relatively small or large diameter of TSV-Cu or Bump can effectively improve the fatigue life of Bump-RDL interface. 2) The fatigue life of the top interface between TSV-Cu and SiO2 layer is slightly higher than that of the bottom interface. 3) The optimal dimension combination of TSV interconnected array is highly related with external working environment and own working state. Under the condition of this study, the dimension corresponding to Case 0 (TSV-Cu diameter: \n<inline-formula> <tex-math>$5~\\mu $ </tex-math></inline-formula>\nm, Bump diameter: \n<inline-formula> <tex-math>$10~\\mu $ </tex-math></inline-formula>\nm, Pitch: \n<inline-formula> <tex-math>$100~\\mu $ </tex-math></inline-formula>\nm, SiO2 layer thickness: \n<inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>\nm) is the optimal solution. 4) TSV-Cu diameter and SiO2 thickness have the greatest influence on the fatigue life of TSV array. Relevant results can provide valuable references for locating the weak points of the TSV interconnected array and the subsequent optimization design.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"571-583"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension Influence on the Interface Fatigue Characteristics of Three-Dimensional TSV Array: A Fully Coupled Thermal-Electrical-Structural Analysis\",\"authors\":\"Kaihong Hou;Zhengwei Fan;Shufeng Zhang;Yashun Wang;Xun Chen\",\"doi\":\"10.1109/TDMR.2024.3453923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the interconnected structure of 3D chip, through-silicon via undertakes the key functions in energy transmission, mechanical support and signal transmission of 3D chip. With the increasing of TSV interconnection density, the reliability of TSV is becoming increasingly prominent, and the slight variation of TSV dimension may exert severe impact on the fatigue life of the TSV array. In this study, a typical double-layer TSV interconnected 3D array is built to carried out the multi-interface fatigue analysis under thermoelectric structure coupling field, the influence of different dimension of the TSV interconnected array on the fatigue life of various interface and whole thermoelectric circuit are deeply investigated. Results shows that: 1) relatively small or large diameter of TSV-Cu or Bump can effectively improve the fatigue life of Bump-RDL interface. 2) The fatigue life of the top interface between TSV-Cu and SiO2 layer is slightly higher than that of the bottom interface. 3) The optimal dimension combination of TSV interconnected array is highly related with external working environment and own working state. Under the condition of this study, the dimension corresponding to Case 0 (TSV-Cu diameter: \\n<inline-formula> <tex-math>$5~\\\\mu $ </tex-math></inline-formula>\\nm, Bump diameter: \\n<inline-formula> <tex-math>$10~\\\\mu $ </tex-math></inline-formula>\\nm, Pitch: \\n<inline-formula> <tex-math>$100~\\\\mu $ </tex-math></inline-formula>\\nm, SiO2 layer thickness: \\n<inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>\\nm) is the optimal solution. 4) TSV-Cu diameter and SiO2 thickness have the greatest influence on the fatigue life of TSV array. Relevant results can provide valuable references for locating the weak points of the TSV interconnected array and the subsequent optimization design.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"24 4\",\"pages\":\"571-583\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663675/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663675/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dimension Influence on the Interface Fatigue Characteristics of Three-Dimensional TSV Array: A Fully Coupled Thermal-Electrical-Structural Analysis
As the interconnected structure of 3D chip, through-silicon via undertakes the key functions in energy transmission, mechanical support and signal transmission of 3D chip. With the increasing of TSV interconnection density, the reliability of TSV is becoming increasingly prominent, and the slight variation of TSV dimension may exert severe impact on the fatigue life of the TSV array. In this study, a typical double-layer TSV interconnected 3D array is built to carried out the multi-interface fatigue analysis under thermoelectric structure coupling field, the influence of different dimension of the TSV interconnected array on the fatigue life of various interface and whole thermoelectric circuit are deeply investigated. Results shows that: 1) relatively small or large diameter of TSV-Cu or Bump can effectively improve the fatigue life of Bump-RDL interface. 2) The fatigue life of the top interface between TSV-Cu and SiO2 layer is slightly higher than that of the bottom interface. 3) The optimal dimension combination of TSV interconnected array is highly related with external working environment and own working state. Under the condition of this study, the dimension corresponding to Case 0 (TSV-Cu diameter:
$5~\mu $
m, Bump diameter:
$10~\mu $
m, Pitch:
$100~\mu $
m, SiO2 layer thickness:
$1~\mu $
m) is the optimal solution. 4) TSV-Cu diameter and SiO2 thickness have the greatest influence on the fatigue life of TSV array. Relevant results can provide valuable references for locating the weak points of the TSV interconnected array and the subsequent optimization design.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.