结合分析模型和机器学习模型,加强需求预测

IF 1.1 Q3 BUSINESS, FINANCE
Simon Nanty, Thomas Fiig, Ludovic Zannier, Michael Defoin-Platel
{"title":"结合分析模型和机器学习模型,加强需求预测","authors":"Simon Nanty, Thomas Fiig, Ludovic Zannier, Michael Defoin-Platel","doi":"10.1057/s41272-024-00490-w","DOIUrl":null,"url":null,"abstract":"<p>Analytical models (AM) and machine learning (ML) models are often considered to be at opposite ends of the modeling spectrum. AM are closed form expressions based on first principles which require deep domain knowledge and are difficult to construct but can extrapolate to unseen data and are data-efficient and interpretable. At the other end, ML models require little or no domain knowledge to construct, are flexible, and can provide superior accuracy in data-rich environments, but cannot extrapolate, are data-inefficient and are black boxes. We investigate how to consolidate these opposite views to obtain the best of both worlds in the context of airline demand forecasting. We leverage on an existing AM baseline and employ deep learning-based ML models as correctional multiplicative factors. This approach provides a transparent, interpretable hybrid model with a forecast accuracy outperforming both pure AM and pure ML models.</p>","PeriodicalId":46686,"journal":{"name":"Journal of Revenue and Pricing Management","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced demand forecasting by combining analytical models and machine learning models\",\"authors\":\"Simon Nanty, Thomas Fiig, Ludovic Zannier, Michael Defoin-Platel\",\"doi\":\"10.1057/s41272-024-00490-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analytical models (AM) and machine learning (ML) models are often considered to be at opposite ends of the modeling spectrum. AM are closed form expressions based on first principles which require deep domain knowledge and are difficult to construct but can extrapolate to unseen data and are data-efficient and interpretable. At the other end, ML models require little or no domain knowledge to construct, are flexible, and can provide superior accuracy in data-rich environments, but cannot extrapolate, are data-inefficient and are black boxes. We investigate how to consolidate these opposite views to obtain the best of both worlds in the context of airline demand forecasting. We leverage on an existing AM baseline and employ deep learning-based ML models as correctional multiplicative factors. This approach provides a transparent, interpretable hybrid model with a forecast accuracy outperforming both pure AM and pure ML models.</p>\",\"PeriodicalId\":46686,\"journal\":{\"name\":\"Journal of Revenue and Pricing Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Revenue and Pricing Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41272-024-00490-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Revenue and Pricing Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41272-024-00490-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

分析模型(AM)和机器学习模型(ML)通常被认为是建模领域的两个极端。AM 是基于第一原理的封闭式表达,需要深厚的领域知识,难以构建,但可以推断出未见数据,具有数据效率和可解释性。在另一端,ML 模型只需要很少或根本不需要领域知识就能构建,具有灵活性,在数据丰富的环境中能提供卓越的准确性,但不能外推,数据效率低下,而且是黑盒子。我们研究了如何在航空公司需求预测的背景下整合这些相反的观点,以获得两全其美的效果。我们利用现有的调幅基线,采用基于深度学习的 ML 模型作为修正乘法因子。这种方法提供了一种透明、可解释的混合模型,其预测精度优于纯 AM 模型和纯 ML 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced demand forecasting by combining analytical models and machine learning models

Enhanced demand forecasting by combining analytical models and machine learning models

Analytical models (AM) and machine learning (ML) models are often considered to be at opposite ends of the modeling spectrum. AM are closed form expressions based on first principles which require deep domain knowledge and are difficult to construct but can extrapolate to unseen data and are data-efficient and interpretable. At the other end, ML models require little or no domain knowledge to construct, are flexible, and can provide superior accuracy in data-rich environments, but cannot extrapolate, are data-inefficient and are black boxes. We investigate how to consolidate these opposite views to obtain the best of both worlds in the context of airline demand forecasting. We leverage on an existing AM baseline and employ deep learning-based ML models as correctional multiplicative factors. This approach provides a transparent, interpretable hybrid model with a forecast accuracy outperforming both pure AM and pure ML models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
18.80%
发文量
26
期刊介绍: The?Journal of Revenue and Pricing Management?serves the community of researchers and practitioners dedicated to improving understanding through insight and real life situations. Each article emphasizes meaningful answers to problems whether cutting edge science or real solutions. The journal places an emphasis disseminating the best articles from the best minds and benchmarked businesses within the field of Revenue Management and Pricing.Revenue management (RM) also known as Yield Management (YM) is a management activity that marries the diverse disciplines of operations research/management science analytics economics human resource management software development marketing economics e-commerce consumer behaviour and consulting to manage demand for a firm's products or services with the goal of profit maximisation. From a practitioner standpoint RM encompasses a range of activities related to demand management including pricing segmentation capacity and inventory allocation demand modelling and business process management.Journal of Revenue and Pricing Management?aims to:formulate and disseminate a body of knowledge called 'RM and pricing' to practitioners educators researchers and students;provide an international forum for a wide range of practical theoretical and applied research in the fields of RM and pricing;represent a multi-disciplinary set of views on key and emerging issues in RM and pricing;include a cross-section of methodologies and viewpoints on research including quantitative and qualitative approaches case studies and empirical and theoretical studies;encourage greater understanding and linkage between the fields of study related to revenue management and pricing;to publish new and original ideas on research policy and managementencourage and engage with professional communities to adopt the Journal as the place of knowledge excellence i.e. INFORMS Revenue Management & Pricing section AGIFORS and Revenue Management Society and Revenue Management and Pricing International Ltd.Published six times a year?Journal of Revenue and Pricing Management?publishes a wide range of peer-reviewed practice papers research articles and professional briefings written by industry experts - including:Practice papers - addressing the issues facing practitioners in industry and consultancyApplied research papers - from leading institutions on all areas of research of interest to practitioners and the implications for practiceCase studies - focusing on the real-life challenges and problems faced by major corporations how they were approached and what was learnedModels and theories - practical models and theories which are being used in revenue managementThoughts - assessment of the key issues new trends and future ideas by leading experts and practitionersApprentice - the publication of tomorrows ideas by students of todayBook/conference reviews - reviewing leading conferences and major new books on RM and pricingThe Journal is essential reading for senior professionals in private and public sector organisations and academic observers in universities and business schools - including:Pricing AnalystsRevenue ManagersHeads of Revenue ManagementHeads of Yield ManagementDirectors of PricingHeads of MarketingChief Operating OfficersCommercial DirectorsDirectors of SalesDirectors of OperationsHeads of ResearchPricing ConsultantsProfessorsLecturers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信