S. Trieu;F. Hoffmann;M. de Haas;G. Tchilinguirian;B. P. LeBlanc
{"title":"用于 NSTX-U 汤姆逊散射诊断仪的实时以太网接口 (2023)","authors":"S. Trieu;F. Hoffmann;M. de Haas;G. Tchilinguirian;B. P. LeBlanc","doi":"10.1109/TPS.2024.3421897","DOIUrl":null,"url":null,"abstract":"The multipoint Thomson scattering (MPTS) diagnostic system at the National Spherical Torus Experiment Upgrade (NSTX-U) facility is undergoing an upgrade to operate in real-time and interface with the plasma control system (PCS) for NSTX-U. Previous prototyping efforts have shown that spectral analysis and rapid calculations of electron temperature and density are possible on a real-time Linux machine when using up to a 100-Hz laser pulse repetition rate. A remaining challenge was transferring the real-time data to NSTX-U’s PCS, which utilizes the front panel data port (FPDP) protocol. The original proposed method was to convert the real-time data into analog values, but a new solution was developed to keep the output format digital by using an Ethernet controller with a field-programmable gate array (FPGA). This article focuses on a new input module that has been developed to accept incoming user datagram protocol (UDP) packets sent over Ethernet, convert into FPDP format, and integrate into the existing data stream under NSTX-U’s real-time framework.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 6","pages":"2213-2217"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Ethernet Interface for NSTX-U’s Thomson Scattering Diagnostic (2023)\",\"authors\":\"S. Trieu;F. Hoffmann;M. de Haas;G. Tchilinguirian;B. P. LeBlanc\",\"doi\":\"10.1109/TPS.2024.3421897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multipoint Thomson scattering (MPTS) diagnostic system at the National Spherical Torus Experiment Upgrade (NSTX-U) facility is undergoing an upgrade to operate in real-time and interface with the plasma control system (PCS) for NSTX-U. Previous prototyping efforts have shown that spectral analysis and rapid calculations of electron temperature and density are possible on a real-time Linux machine when using up to a 100-Hz laser pulse repetition rate. A remaining challenge was transferring the real-time data to NSTX-U’s PCS, which utilizes the front panel data port (FPDP) protocol. The original proposed method was to convert the real-time data into analog values, but a new solution was developed to keep the output format digital by using an Ethernet controller with a field-programmable gate array (FPGA). This article focuses on a new input module that has been developed to accept incoming user datagram protocol (UDP) packets sent over Ethernet, convert into FPDP format, and integrate into the existing data stream under NSTX-U’s real-time framework.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 6\",\"pages\":\"2213-2217\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10645716/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10645716/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Real-Time Ethernet Interface for NSTX-U’s Thomson Scattering Diagnostic (2023)
The multipoint Thomson scattering (MPTS) diagnostic system at the National Spherical Torus Experiment Upgrade (NSTX-U) facility is undergoing an upgrade to operate in real-time and interface with the plasma control system (PCS) for NSTX-U. Previous prototyping efforts have shown that spectral analysis and rapid calculations of electron temperature and density are possible on a real-time Linux machine when using up to a 100-Hz laser pulse repetition rate. A remaining challenge was transferring the real-time data to NSTX-U’s PCS, which utilizes the front panel data port (FPDP) protocol. The original proposed method was to convert the real-time data into analog values, but a new solution was developed to keep the output format digital by using an Ethernet controller with a field-programmable gate array (FPGA). This article focuses on a new input module that has been developed to accept incoming user datagram protocol (UDP) packets sent over Ethernet, convert into FPDP format, and integrate into the existing data stream under NSTX-U’s real-time framework.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.