Xiaojing Ren;Longbo Yan;Weihua Jiang;Jingming Gao;Hanwu Yang
{"title":"基于串联混合储能的脉冲发生电路","authors":"Xiaojing Ren;Longbo Yan;Weihua Jiang;Jingming Gao;Hanwu Yang","doi":"10.1109/TPS.2024.3443908","DOIUrl":null,"url":null,"abstract":"As an extension research of pulse power generation method, we proposed a new variant of pulse generation circuit based on hybrid energy storage (HES). The energy storage structure of the proposed circuit is a series connection of two capacitors and one inductor, referred as a CLC series HES circuit. Under the control of two switches, the capacitors on both sides simultaneously transfer energy to the center inductor, shortening the inductor’s charging time. Moreover, these two switches act as opening switches for inductive discharge, and their current is only half of the inductor current, meaning that this CLC circuit can effectively alleviate the current limitation of the opening switches. In this research, based on power SiC MOSFETs, experimental circuits have been set up to verify the feasibility of the proposed circuit. As a result, when charging at 200 V, the output voltage of one CLC module on a \n<inline-formula> <tex-math>$10~\\Omega $ </tex-math></inline-formula>\n load is ~800 V, with a rise time of ~13 ns and a pulse half width of ~24 ns, and the operation stability at 1000 Hz has been demonstrated. Finally, by gradually increasing the module number to four stages, the stackability of the multiple-module CLC series HES pulse generation circuit has also been confirmed. When the charging voltage is 800 V, the output voltage on a ~40-\n<inline-formula> <tex-math>$\\Omega $ </tex-math></inline-formula>\n load is ~2.9 kV with a rise time of 17 ns.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 7","pages":"2926-2932"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pulse Generation Circuit Based on Series Hybrid Energy Storage\",\"authors\":\"Xiaojing Ren;Longbo Yan;Weihua Jiang;Jingming Gao;Hanwu Yang\",\"doi\":\"10.1109/TPS.2024.3443908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an extension research of pulse power generation method, we proposed a new variant of pulse generation circuit based on hybrid energy storage (HES). The energy storage structure of the proposed circuit is a series connection of two capacitors and one inductor, referred as a CLC series HES circuit. Under the control of two switches, the capacitors on both sides simultaneously transfer energy to the center inductor, shortening the inductor’s charging time. Moreover, these two switches act as opening switches for inductive discharge, and their current is only half of the inductor current, meaning that this CLC circuit can effectively alleviate the current limitation of the opening switches. In this research, based on power SiC MOSFETs, experimental circuits have been set up to verify the feasibility of the proposed circuit. As a result, when charging at 200 V, the output voltage of one CLC module on a \\n<inline-formula> <tex-math>$10~\\\\Omega $ </tex-math></inline-formula>\\n load is ~800 V, with a rise time of ~13 ns and a pulse half width of ~24 ns, and the operation stability at 1000 Hz has been demonstrated. Finally, by gradually increasing the module number to four stages, the stackability of the multiple-module CLC series HES pulse generation circuit has also been confirmed. When the charging voltage is 800 V, the output voltage on a ~40-\\n<inline-formula> <tex-math>$\\\\Omega $ </tex-math></inline-formula>\\n load is ~2.9 kV with a rise time of 17 ns.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 7\",\"pages\":\"2926-2932\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666085/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10666085/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
A Pulse Generation Circuit Based on Series Hybrid Energy Storage
As an extension research of pulse power generation method, we proposed a new variant of pulse generation circuit based on hybrid energy storage (HES). The energy storage structure of the proposed circuit is a series connection of two capacitors and one inductor, referred as a CLC series HES circuit. Under the control of two switches, the capacitors on both sides simultaneously transfer energy to the center inductor, shortening the inductor’s charging time. Moreover, these two switches act as opening switches for inductive discharge, and their current is only half of the inductor current, meaning that this CLC circuit can effectively alleviate the current limitation of the opening switches. In this research, based on power SiC MOSFETs, experimental circuits have been set up to verify the feasibility of the proposed circuit. As a result, when charging at 200 V, the output voltage of one CLC module on a
$10~\Omega $
load is ~800 V, with a rise time of ~13 ns and a pulse half width of ~24 ns, and the operation stability at 1000 Hz has been demonstrated. Finally, by gradually increasing the module number to four stages, the stackability of the multiple-module CLC series HES pulse generation circuit has also been confirmed. When the charging voltage is 800 V, the output voltage on a ~40-
$\Omega $
load is ~2.9 kV with a rise time of 17 ns.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.