基于 XFEM 方法的离散断裂网络剪切过程中的非线性流动研究

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"基于 XFEM 方法的离散断裂网络剪切过程中的非线性流动研究","authors":"","doi":"10.1016/j.compgeo.2024.106744","DOIUrl":null,"url":null,"abstract":"<div><p>To characterize fractured rock masses, self-developed programs are utilized to generate fracture networks. A nonlinear flow model considering the shear dilatancy effect is established, and a numerical solution method for modelling nonlinear flow in fractured rock masses during shear is proposed on the basis of extended finite element analysis. The contour plots reveal distinct patterns in the water pressure and flow distributions within fractures. The reduction in the lateral pressure coefficient and increase in the shear stiffness of the joints facilitate a more homogeneous distribution of the water pressure gradient. Under the same vertical stress, increasing the lateral pressure coefficient or decreasing the shear stiffness leads to a more pronounced shear dilatancy effect on fractures. Consequently, an increase in fracture aperture and permeability occurs, and the flow of the fractured rock mass is enhanced. With the same vertical stress, an increase in horizontal stress and a decrease in shear stiffness lead to a gradual reduction in the linear and nonlinear coefficients of Forchheimer’s law. Specifically, the influence of the lateral pressure coefficient on the linear coefficient is greater than that on the nonlinear coefficient.</p></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of nonlinear flow in discrete fracture networks during shear based on XFEM method\",\"authors\":\"\",\"doi\":\"10.1016/j.compgeo.2024.106744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To characterize fractured rock masses, self-developed programs are utilized to generate fracture networks. A nonlinear flow model considering the shear dilatancy effect is established, and a numerical solution method for modelling nonlinear flow in fractured rock masses during shear is proposed on the basis of extended finite element analysis. The contour plots reveal distinct patterns in the water pressure and flow distributions within fractures. The reduction in the lateral pressure coefficient and increase in the shear stiffness of the joints facilitate a more homogeneous distribution of the water pressure gradient. Under the same vertical stress, increasing the lateral pressure coefficient or decreasing the shear stiffness leads to a more pronounced shear dilatancy effect on fractures. Consequently, an increase in fracture aperture and permeability occurs, and the flow of the fractured rock mass is enhanced. With the same vertical stress, an increase in horizontal stress and a decrease in shear stiffness lead to a gradual reduction in the linear and nonlinear coefficients of Forchheimer’s law. Specifically, the influence of the lateral pressure coefficient on the linear coefficient is greater than that on the nonlinear coefficient.</p></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24006839\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24006839","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了描述断裂岩体的特征,利用自行开发的程序生成断裂网络。在扩展有限元分析的基础上,建立了考虑剪切扩张效应的非线性流动模型,并提出了模拟断裂岩体在剪切过程中非线性流动的数值求解方法。等值线图揭示了裂缝内水压和水流分布的明显规律。横向压力系数的降低和节理剪切刚度的增加有助于水压梯度的更均匀分布。在相同的垂直应力下,提高横向压力系数或降低剪切刚度会对裂缝产生更明显的剪切扩张效应。因此,裂隙孔径和渗透率增加,裂隙岩体的流动性增强。在垂直应力相同的情况下,水平应力的增加和剪切刚度的减小会导致福赫海默尔定律的线性和非线性系数逐渐减小。具体来说,横向压力系数对线性系数的影响大于对非线性系数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of nonlinear flow in discrete fracture networks during shear based on XFEM method

To characterize fractured rock masses, self-developed programs are utilized to generate fracture networks. A nonlinear flow model considering the shear dilatancy effect is established, and a numerical solution method for modelling nonlinear flow in fractured rock masses during shear is proposed on the basis of extended finite element analysis. The contour plots reveal distinct patterns in the water pressure and flow distributions within fractures. The reduction in the lateral pressure coefficient and increase in the shear stiffness of the joints facilitate a more homogeneous distribution of the water pressure gradient. Under the same vertical stress, increasing the lateral pressure coefficient or decreasing the shear stiffness leads to a more pronounced shear dilatancy effect on fractures. Consequently, an increase in fracture aperture and permeability occurs, and the flow of the fractured rock mass is enhanced. With the same vertical stress, an increase in horizontal stress and a decrease in shear stiffness lead to a gradual reduction in the linear and nonlinear coefficients of Forchheimer’s law. Specifically, the influence of the lateral pressure coefficient on the linear coefficient is greater than that on the nonlinear coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信