Kang Li , Ruozhong Han , Mengqi Suo , Mingquan Long , Long Chen , Kaiqiang Cao , Shian Zhang , Donghai Feng , Tianqing Jia , Zhenrong Sun , Hongxing Xu
{"title":"利用飞秒激光双光束干涉直接写入技术在硅片上高效制造出远超衍射极限的高质量纳米研磨层","authors":"Kang Li , Ruozhong Han , Mengqi Suo , Mingquan Long , Long Chen , Kaiqiang Cao , Shian Zhang , Donghai Feng , Tianqing Jia , Zhenrong Sun , Hongxing Xu","doi":"10.1016/j.optlastec.2024.111505","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrated a femtosecond laser dual-beam interference direct writing (DBIDW) method for fabricating high-quality nanogratings on silicon. The nanogratings had Λ/2, Λ/3, and Λ/4 periods, with Λ slightly smaller than the laser wavelength. The grating stripes exhibited extremely smooth and straight edges, with an average line edge roughness (LER) of 2.23 nm and a difference in structural orientation angle (DSOA) of 2.3°. The formation mechanism involves interference enhancement inducing nanoplasma formation in periodic stripes, while local asymmetric enhancement by surface plasmons significantly increases light intensity inside the nanogrooves. This method greatly reduces thermal effects and debris deposition, offering significant advantages for high-efficiency, low-cost, large-area nanolithography.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111505"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High quality nanogratings far beyond diffraction limits on silicon efficiently fabricated using femtosecond laser dual-beam interference direct writing\",\"authors\":\"Kang Li , Ruozhong Han , Mengqi Suo , Mingquan Long , Long Chen , Kaiqiang Cao , Shian Zhang , Donghai Feng , Tianqing Jia , Zhenrong Sun , Hongxing Xu\",\"doi\":\"10.1016/j.optlastec.2024.111505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study demonstrated a femtosecond laser dual-beam interference direct writing (DBIDW) method for fabricating high-quality nanogratings on silicon. The nanogratings had Λ/2, Λ/3, and Λ/4 periods, with Λ slightly smaller than the laser wavelength. The grating stripes exhibited extremely smooth and straight edges, with an average line edge roughness (LER) of 2.23 nm and a difference in structural orientation angle (DSOA) of 2.3°. The formation mechanism involves interference enhancement inducing nanoplasma formation in periodic stripes, while local asymmetric enhancement by surface plasmons significantly increases light intensity inside the nanogrooves. This method greatly reduces thermal effects and debris deposition, offering significant advantages for high-efficiency, low-cost, large-area nanolithography.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111505\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224009630\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224009630","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
High quality nanogratings far beyond diffraction limits on silicon efficiently fabricated using femtosecond laser dual-beam interference direct writing
This study demonstrated a femtosecond laser dual-beam interference direct writing (DBIDW) method for fabricating high-quality nanogratings on silicon. The nanogratings had Λ/2, Λ/3, and Λ/4 periods, with Λ slightly smaller than the laser wavelength. The grating stripes exhibited extremely smooth and straight edges, with an average line edge roughness (LER) of 2.23 nm and a difference in structural orientation angle (DSOA) of 2.3°. The formation mechanism involves interference enhancement inducing nanoplasma formation in periodic stripes, while local asymmetric enhancement by surface plasmons significantly increases light intensity inside the nanogrooves. This method greatly reduces thermal effects and debris deposition, offering significant advantages for high-efficiency, low-cost, large-area nanolithography.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems