无水冷散装固体激光器发出的室温高功率 TEM00 模式光束

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sanbin Chen , Ken-Ichi Ueda
{"title":"无水冷散装固体激光器发出的室温高功率 TEM00 模式光束","authors":"Sanbin Chen ,&nbsp;Ken-Ichi Ueda","doi":"10.1016/j.optlastec.2024.111630","DOIUrl":null,"url":null,"abstract":"<div><p>Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM<sub>00</sub> mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM<sub>00</sub> mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0030399224010880/pdfft?md5=2e1a90caa4b601ce03b0d55db142b8d3&pid=1-s2.0-S0030399224010880-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Room temperature high-power TEM00 mode beam from bulk solid-state laser without water cooling\",\"authors\":\"Sanbin Chen ,&nbsp;Ken-Ichi Ueda\",\"doi\":\"10.1016/j.optlastec.2024.111630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM<sub>00</sub> mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM<sub>00</sub> mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0030399224010880/pdfft?md5=2e1a90caa4b601ce03b0d55db142b8d3&pid=1-s2.0-S0030399224010880-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224010880\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224010880","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

获得高功率、高光束质量和高效率的激光源一直是固体激光技术的重要发展目标之一。然而,到目前为止,还无法直接从简单的固体激光器中获得无需液体冷却的百瓦 TEM00 模式(大体积)光束。为了克服这些挑战,我们在此提出了一种基于低热效应原理和功率叠加法的新方法。这样,在室温下,最简单的 Nd:YAG 激光器就能产生 131 W 的 TEM00 模式。重要的是,该激光器可长时间稳定工作(3 小时内均方根为 0.307%),增益介质由风扇冷却。该演示有望提升固态激光源的高功率和高光束质量应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Room temperature high-power TEM00 mode beam from bulk solid-state laser without water cooling

Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM00 mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM00 mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信