{"title":"无水冷散装固体激光器发出的室温高功率 TEM00 模式光束","authors":"Sanbin Chen , Ken-Ichi Ueda","doi":"10.1016/j.optlastec.2024.111630","DOIUrl":null,"url":null,"abstract":"<div><p>Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM<sub>00</sub> mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM<sub>00</sub> mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111630"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0030399224010880/pdfft?md5=2e1a90caa4b601ce03b0d55db142b8d3&pid=1-s2.0-S0030399224010880-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Room temperature high-power TEM00 mode beam from bulk solid-state laser without water cooling\",\"authors\":\"Sanbin Chen , Ken-Ichi Ueda\",\"doi\":\"10.1016/j.optlastec.2024.111630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM<sub>00</sub> mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM<sub>00</sub> mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111630\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0030399224010880/pdfft?md5=2e1a90caa4b601ce03b0d55db142b8d3&pid=1-s2.0-S0030399224010880-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224010880\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224010880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Room temperature high-power TEM00 mode beam from bulk solid-state laser without water cooling
Obtaining high power, high beam quality, and high efficiency laser sources has always been one of the important development goals in solid-state laser technology. However, up to now, hundred-watt TEM00 mode (large-volume) beams directly from simple solid-state lasers without liquid cooling are not available. To overcome these challenges, here we propose a new approach based on the principle of low thermal effect and the power superposition method. By doing so, at room temperature, a 131 W TEM00 mode is obtained from the simplest Nd:YAG laser. Importantly, the laser can work stably for a long time (root mean square: 0.307 % over 3 h), and the gain medium is cooled by a fan. This demonstration promises to upgrade high-power and high beam quality applications for solid-state laser sources.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems