Wei Shi , Dongfeng Qi , Wenke Wang , Zhanzhu Li , Jianguo Zhang , Hongyu Zheng , Bing Yang , Tengfei Sun , Juan Wei , Songyan Chen
{"title":"非晶硅薄膜上的飞秒激光诱导周期结构及结晶特性研究","authors":"Wei Shi , Dongfeng Qi , Wenke Wang , Zhanzhu Li , Jianguo Zhang , Hongyu Zheng , Bing Yang , Tengfei Sun , Juan Wei , Songyan Chen","doi":"10.1016/j.optlastec.2024.111764","DOIUrl":null,"url":null,"abstract":"<div><p>The large area and uniform laser-induced periodic surface structure has a wide range of industrial application potential. The effect of the laser beam scanning velocity and laser fluence on the large-area fabrication of Laser-Induced Periodic Surface Structures (LIPSS), on 50 nm thickness a-Si thin films, is investigated. The results show that the formation and crystallization changes of LIPSS structure are obviously related to the scanning speed and laser fluence. In addition to surface morphology, the crystallinity of polycrystalline silicon can also be controlled by laser parameters. Based on these results, we applied direct laser induced periodic surface structuring to drive the phase transition from amorphous silicon into polycrystalline silicon. And prepare the periodic fringe structure of polycrystalline silicon with good crystallization and regular structure. By changing the polarization direction of the incident laser, the periodic surface structure with specific orientation can be obtained, and the surface of the material can be endowed with significant optical properties. When the prepared polycrystalline silicon periodic structure samples with different orientations are put into dark field microscope, the different color effects of the samples can be observed.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111764"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0030399224012222/pdfft?md5=c5507dfba473673f085fded45d921291&pid=1-s2.0-S0030399224012222-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study of femtosecond laser induced periodic structure on amorphous silicon films and crystallization characteristics\",\"authors\":\"Wei Shi , Dongfeng Qi , Wenke Wang , Zhanzhu Li , Jianguo Zhang , Hongyu Zheng , Bing Yang , Tengfei Sun , Juan Wei , Songyan Chen\",\"doi\":\"10.1016/j.optlastec.2024.111764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The large area and uniform laser-induced periodic surface structure has a wide range of industrial application potential. The effect of the laser beam scanning velocity and laser fluence on the large-area fabrication of Laser-Induced Periodic Surface Structures (LIPSS), on 50 nm thickness a-Si thin films, is investigated. The results show that the formation and crystallization changes of LIPSS structure are obviously related to the scanning speed and laser fluence. In addition to surface morphology, the crystallinity of polycrystalline silicon can also be controlled by laser parameters. Based on these results, we applied direct laser induced periodic surface structuring to drive the phase transition from amorphous silicon into polycrystalline silicon. And prepare the periodic fringe structure of polycrystalline silicon with good crystallization and regular structure. By changing the polarization direction of the incident laser, the periodic surface structure with specific orientation can be obtained, and the surface of the material can be endowed with significant optical properties. When the prepared polycrystalline silicon periodic structure samples with different orientations are put into dark field microscope, the different color effects of the samples can be observed.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111764\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012222/pdfft?md5=c5507dfba473673f085fded45d921291&pid=1-s2.0-S0030399224012222-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012222\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012222","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Study of femtosecond laser induced periodic structure on amorphous silicon films and crystallization characteristics
The large area and uniform laser-induced periodic surface structure has a wide range of industrial application potential. The effect of the laser beam scanning velocity and laser fluence on the large-area fabrication of Laser-Induced Periodic Surface Structures (LIPSS), on 50 nm thickness a-Si thin films, is investigated. The results show that the formation and crystallization changes of LIPSS structure are obviously related to the scanning speed and laser fluence. In addition to surface morphology, the crystallinity of polycrystalline silicon can also be controlled by laser parameters. Based on these results, we applied direct laser induced periodic surface structuring to drive the phase transition from amorphous silicon into polycrystalline silicon. And prepare the periodic fringe structure of polycrystalline silicon with good crystallization and regular structure. By changing the polarization direction of the incident laser, the periodic surface structure with specific orientation can be obtained, and the surface of the material can be endowed with significant optical properties. When the prepared polycrystalline silicon periodic structure samples with different orientations are put into dark field microscope, the different color effects of the samples can be observed.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems