{"title":"超导合金的 Ab initio 建模","authors":"","doi":"10.1016/j.mtphys.2024.101547","DOIUrl":null,"url":null,"abstract":"<div><p>Designing new, technologically relevant superconductors has long been at the forefront of solid-state physics and chemistry research. However, developing efficient approaches for modeling the thermodynamics of superconducting alloys while accurately evaluating their physical properties has proven to be a very challenging task. To fill this gap, we propose an ab initio thermodynamic statistical method, the Extended Generalized Quasichemical Approximation (EGQCA), to describe off-stoichiometric superconductors. Within EGQCA, one can predict any computationally accessible property of the alloy, such as the critical temperature in superconductors and the electron-phonon coupling parameter, as a function of composition and crystal growth conditions using a few small supercells. Importantly, EGQCA incorporates directly chemical ordering, lattice distortions, and vibrational contributions. As a proof of concept, we applied EGQCA to the well-known Al-doped MgBb<sub>2</sub> and to niobium alloyed with titanium and vanadium, showing a remarkable agreement with the experimental data. Additionally, we modeled the near-room temperature sodalite-like Y<sub>1−<em>x</em></sub>Ca<sub><em>x</em></sub>H<sub>6</sub> superconducting solid solution, demonstrating that EGQCA particularly possesses a promising potential for designing <em>in silico</em> high-<em>T</em><sub>c</sub> superhydride alloys. Our approach enables the high-throughput screening of complex superconducting solid solutions, providing valuable insights into these systems' synthesis, thermodynamics, and physical properties.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio modeling of superconducting alloys\",\"authors\":\"\",\"doi\":\"10.1016/j.mtphys.2024.101547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing new, technologically relevant superconductors has long been at the forefront of solid-state physics and chemistry research. However, developing efficient approaches for modeling the thermodynamics of superconducting alloys while accurately evaluating their physical properties has proven to be a very challenging task. To fill this gap, we propose an ab initio thermodynamic statistical method, the Extended Generalized Quasichemical Approximation (EGQCA), to describe off-stoichiometric superconductors. Within EGQCA, one can predict any computationally accessible property of the alloy, such as the critical temperature in superconductors and the electron-phonon coupling parameter, as a function of composition and crystal growth conditions using a few small supercells. Importantly, EGQCA incorporates directly chemical ordering, lattice distortions, and vibrational contributions. As a proof of concept, we applied EGQCA to the well-known Al-doped MgBb<sub>2</sub> and to niobium alloyed with titanium and vanadium, showing a remarkable agreement with the experimental data. Additionally, we modeled the near-room temperature sodalite-like Y<sub>1−<em>x</em></sub>Ca<sub><em>x</em></sub>H<sub>6</sub> superconducting solid solution, demonstrating that EGQCA particularly possesses a promising potential for designing <em>in silico</em> high-<em>T</em><sub>c</sub> superhydride alloys. Our approach enables the high-throughput screening of complex superconducting solid solutions, providing valuable insights into these systems' synthesis, thermodynamics, and physical properties.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002232\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing new, technologically relevant superconductors has long been at the forefront of solid-state physics and chemistry research. However, developing efficient approaches for modeling the thermodynamics of superconducting alloys while accurately evaluating their physical properties has proven to be a very challenging task. To fill this gap, we propose an ab initio thermodynamic statistical method, the Extended Generalized Quasichemical Approximation (EGQCA), to describe off-stoichiometric superconductors. Within EGQCA, one can predict any computationally accessible property of the alloy, such as the critical temperature in superconductors and the electron-phonon coupling parameter, as a function of composition and crystal growth conditions using a few small supercells. Importantly, EGQCA incorporates directly chemical ordering, lattice distortions, and vibrational contributions. As a proof of concept, we applied EGQCA to the well-known Al-doped MgBb2 and to niobium alloyed with titanium and vanadium, showing a remarkable agreement with the experimental data. Additionally, we modeled the near-room temperature sodalite-like Y1−xCaxH6 superconducting solid solution, demonstrating that EGQCA particularly possesses a promising potential for designing in silico high-Tc superhydride alloys. Our approach enables the high-throughput screening of complex superconducting solid solutions, providing valuable insights into these systems' synthesis, thermodynamics, and physical properties.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.