{"title":"用于超声辅助预浓缩番茄酱中多环芳烃 (PAHs) 的油桃核衍生磁铁矿生物炭:具有成本效益的可持续方法","authors":"Ali Azari , Hossein Kamani , Maryam Sarkhosh , Neda Vatankhah , Mahmood Yousefi , Hadi Mahmoudi-Moghaddam , Seyed Ali Razavinasab , Mahmood Reza Masoudi , Reza Sadeghi , Nafiseh Sharifi , Kamyar Yaghmaeain","doi":"10.1016/j.fochx.2024.101810","DOIUrl":null,"url":null,"abstract":"<div><p>A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography–mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (<em>w</em>/<em>v</em>) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R<sup>2</sup> > 0.992) across a wide concentration range (0.01-100 ng g<sup>−1</sup>) with high sensitivity (LODs: 0.028-0.053 ng g<sup>−1</sup>, LOQs: 0.094-0.176 ng g<sup>−1</sup>) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101810"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524006989/pdfft?md5=86aa949bde4e4f38ccaa441ca16165e3&pid=1-s2.0-S2590157524006989-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nectarine core-derived magnetite biochar for ultrasound-assisted preconcentration of polycyclic aromatic hydrocarbons (PAHs) in tomato paste: A cost-effective and sustainable approach\",\"authors\":\"Ali Azari , Hossein Kamani , Maryam Sarkhosh , Neda Vatankhah , Mahmood Yousefi , Hadi Mahmoudi-Moghaddam , Seyed Ali Razavinasab , Mahmood Reza Masoudi , Reza Sadeghi , Nafiseh Sharifi , Kamyar Yaghmaeain\",\"doi\":\"10.1016/j.fochx.2024.101810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography–mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (<em>w</em>/<em>v</em>) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R<sup>2</sup> > 0.992) across a wide concentration range (0.01-100 ng g<sup>−1</sup>) with high sensitivity (LODs: 0.028-0.053 ng g<sup>−1</sup>, LOQs: 0.094-0.176 ng g<sup>−1</sup>) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.</p></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101810\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590157524006989/pdfft?md5=86aa949bde4e4f38ccaa441ca16165e3&pid=1-s2.0-S2590157524006989-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524006989\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524006989","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究开发了一种新型超声辅助磁性固相萃取-气相色谱-质谱联用(US-MSPE-GC/MS)方法,利用从油桃核中提取的磁性生物炭吸附剂来检测番茄酱中的痕量多环芳烃(PAHs)。在 10 毫克吸附剂质量、30 分钟萃取时间、9%(w/v)氯化钠和 200 μL 二氯甲烷洗脱条件下,萃取回收率最高。在最佳条件下,该方法在较宽的浓度范围(0.01-100 ng g-1)内线性关系良好(R2 为 0.992),灵敏度高(LODs:0.028-0.053 ng g-1,LOQs:0.094-0.176 ng g-1),重复性好(RSDs 为 5.96%)。US-MSPE-GC/MS 方法的应用在四个品牌的真正番茄酱中进行了测试,在未加标样品中未检测到多环芳烃,表明没有背景污染。在两个浓度水平下,该方法的相对回收率高达 88.03-98.52 %,重现性良好(9.19 %),证实了其在实际样品中进行多环芳烃分析的有效性。
Nectarine core-derived magnetite biochar for ultrasound-assisted preconcentration of polycyclic aromatic hydrocarbons (PAHs) in tomato paste: A cost-effective and sustainable approach
A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography–mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (w/v) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R2 > 0.992) across a wide concentration range (0.01-100 ng g−1) with high sensitivity (LODs: 0.028-0.053 ng g−1, LOQs: 0.094-0.176 ng g−1) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.