{"title":"复杂环境中放置机器人的无碰撞过渡路径规划方法","authors":"Yanzhe Wang, Qian Yang, Weiwei Qu","doi":"10.1007/s40747-024-01585-y","DOIUrl":null,"url":null,"abstract":"<p>In Automated Fiber Placement (AFP), the substantial structure of the placement robot, the variable mold shapes, and the limited free space pose significant challenges for planning collision-free robot transitions. The task involves planning a collision-free path within the robot's high-dimensional configuration space. Informed RRT* is a common approach for such problems but often struggles with efficiency and path quality in environments with large informed sampling spaces influenced by obstacles. To address these issues, this paper proposes an improved Informed RRT* algorithm with a Local Knowledge Acceleration sampling strategy (LKA-Informed RRT*), aimed at enhancing planning efficiency and adaptability in complex obstacle settings. An Adaptive Sampling Control (ASC) rate is introduced, measuring the algorithm’s convergence speed, guides the algorithm to switch between informed and local sampling adaptively. The proposed local sampling method uses failure nodes from the exploration process to estimate obstacle distributions, steering sampling toward regions that expedite path convergence. Experimental results show that LKA-Informed RRT* significantly outperforms state-of-the-art algorithms in convergence efficiency and path cost. Compared to the original Informed RRT*, the proposed method reduces planning time by about 60%, substantially boosting efficiency for collision-free transitions in complex environments.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A collision-free transition path planning method for placement robots in complex environments\",\"authors\":\"Yanzhe Wang, Qian Yang, Weiwei Qu\",\"doi\":\"10.1007/s40747-024-01585-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Automated Fiber Placement (AFP), the substantial structure of the placement robot, the variable mold shapes, and the limited free space pose significant challenges for planning collision-free robot transitions. The task involves planning a collision-free path within the robot's high-dimensional configuration space. Informed RRT* is a common approach for such problems but often struggles with efficiency and path quality in environments with large informed sampling spaces influenced by obstacles. To address these issues, this paper proposes an improved Informed RRT* algorithm with a Local Knowledge Acceleration sampling strategy (LKA-Informed RRT*), aimed at enhancing planning efficiency and adaptability in complex obstacle settings. An Adaptive Sampling Control (ASC) rate is introduced, measuring the algorithm’s convergence speed, guides the algorithm to switch between informed and local sampling adaptively. The proposed local sampling method uses failure nodes from the exploration process to estimate obstacle distributions, steering sampling toward regions that expedite path convergence. Experimental results show that LKA-Informed RRT* significantly outperforms state-of-the-art algorithms in convergence efficiency and path cost. Compared to the original Informed RRT*, the proposed method reduces planning time by about 60%, substantially boosting efficiency for collision-free transitions in complex environments.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01585-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01585-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A collision-free transition path planning method for placement robots in complex environments
In Automated Fiber Placement (AFP), the substantial structure of the placement robot, the variable mold shapes, and the limited free space pose significant challenges for planning collision-free robot transitions. The task involves planning a collision-free path within the robot's high-dimensional configuration space. Informed RRT* is a common approach for such problems but often struggles with efficiency and path quality in environments with large informed sampling spaces influenced by obstacles. To address these issues, this paper proposes an improved Informed RRT* algorithm with a Local Knowledge Acceleration sampling strategy (LKA-Informed RRT*), aimed at enhancing planning efficiency and adaptability in complex obstacle settings. An Adaptive Sampling Control (ASC) rate is introduced, measuring the algorithm’s convergence speed, guides the algorithm to switch between informed and local sampling adaptively. The proposed local sampling method uses failure nodes from the exploration process to estimate obstacle distributions, steering sampling toward regions that expedite path convergence. Experimental results show that LKA-Informed RRT* significantly outperforms state-of-the-art algorithms in convergence efficiency and path cost. Compared to the original Informed RRT*, the proposed method reduces planning time by about 60%, substantially boosting efficiency for collision-free transitions in complex environments.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.