含有双重生长因子组合的混合水凝胶和骨骼干细胞在机械刺激下用于骨修复的体内分析

David Gothard , Michael Rotherham , Emma L. Smith , Janos M. Kanczler , James Henstock , Julia A. Wells , Carol A. Roberts , Omar Qutachi , Heather Peto , Hassan Rashidi , Luis Rojo , Lisa J. White , Molly M. Stevens , Alicia J. El Haj , Felicity R.A.J. Rose , Richard O.C. Oreffo
{"title":"含有双重生长因子组合的混合水凝胶和骨骼干细胞在机械刺激下用于骨修复的体内分析","authors":"David Gothard ,&nbsp;Michael Rotherham ,&nbsp;Emma L. Smith ,&nbsp;Janos M. Kanczler ,&nbsp;James Henstock ,&nbsp;Julia A. Wells ,&nbsp;Carol A. Roberts ,&nbsp;Omar Qutachi ,&nbsp;Heather Peto ,&nbsp;Hassan Rashidi ,&nbsp;Luis Rojo ,&nbsp;Lisa J. White ,&nbsp;Molly M. Stevens ,&nbsp;Alicia J. El Haj ,&nbsp;Felicity R.A.J. Rose ,&nbsp;Richard O.C. Oreffo","doi":"10.1016/j.mbm.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β<sub>3,</sub> PTHrP (fast release), or BMP-2, vitamin D<sub>3</sub> (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD<sub>3</sub> increased bone formation. However, fast-release of TGF-β<sub>3</sub> and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD<sub>3</sub>. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 4","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000597/pdfft?md5=c4df681df7c8d540057e5c6a0cc4449b&pid=1-s2.0-S2949907024000597-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair\",\"authors\":\"David Gothard ,&nbsp;Michael Rotherham ,&nbsp;Emma L. Smith ,&nbsp;Janos M. Kanczler ,&nbsp;James Henstock ,&nbsp;Julia A. Wells ,&nbsp;Carol A. Roberts ,&nbsp;Omar Qutachi ,&nbsp;Heather Peto ,&nbsp;Hassan Rashidi ,&nbsp;Luis Rojo ,&nbsp;Lisa J. White ,&nbsp;Molly M. Stevens ,&nbsp;Alicia J. El Haj ,&nbsp;Felicity R.A.J. Rose ,&nbsp;Richard O.C. Oreffo\",\"doi\":\"10.1016/j.mbm.2024.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β<sub>3,</sub> PTHrP (fast release), or BMP-2, vitamin D<sub>3</sub> (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD<sub>3</sub> increased bone formation. However, fast-release of TGF-β<sub>3</sub> and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD<sub>3</sub>. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"2 4\",\"pages\":\"Article 100096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000597/pdfft?md5=c4df681df7c8d540057e5c6a0cc4449b&pid=1-s2.0-S2949907024000597-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨组织工程需要结合材料、细胞、生长因子和机械线索来重现骨形成。在这项研究中,我们通过将生物材料与骨骼干细胞、生长因子的分阶段释放以及机械传导相结合,评估了用于微创骨形成的混合水凝胶。由海藻酸盐和脱细胞、脱矿质骨细胞外基质(ALG/ECM)组成的混合水凝胶中接种了Stro-1+人骨髓基质细胞(HBMSCs)。在水凝胶中加入了分阶段释放的聚乳酸-聚乙二醇(PLGA)微粒中的双重生长因子组合,以部分模拟骨再生过程中的信号传导事件:VEGF、TGF-β3、PTHrP(快速释放)或 BMP-2、维生素 D3(缓慢释放)。利用磁场远程驱动针对 TREK1 离子通道的超顺磁性纳米粒子 (MNP),启动机械传导。将混合水凝胶植入小鼠皮下 28 天,并使用显微 CT 和组织学方法评估骨形成情况。缺乏 HBMSCs、生长因子或 MNP 的对照水凝胶会矿化,而生长因子、HBMSCs 或机械传导都不会增加骨形成。然而,新形成骨的结构差异受到生长因子的影响。缓慢释放的 BMP-2 可诱导厚骨小梁,PTHrP 或 VitD3 可增加骨形成。然而,快速释放的 TGF-β3 和 VEGF 会导致骨小梁变薄。机械传导逆转了骨小梁变薄,并增加了 PTHrP 和 VitD3 的胶原沉积。我们的研究结果表明,ALG/ECM 水凝胶-细胞生长因子混合构建物具有修复骨质的潜力,结合机械传导可对骨质结构进行微调。这种方法可能会成为骨组织工程应用中的一种微创修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair

Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β3, PTHrP (fast release), or BMP-2, vitamin D3 (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD3 increased bone formation. However, fast-release of TGF-β3 and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD3. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信