David Gothard , Michael Rotherham , Emma L. Smith , Janos M. Kanczler , James Henstock , Julia A. Wells , Carol A. Roberts , Omar Qutachi , Heather Peto , Hassan Rashidi , Luis Rojo , Lisa J. White , Molly M. Stevens , Alicia J. El Haj , Felicity R.A.J. Rose , Richard O.C. Oreffo
{"title":"含有双重生长因子组合的混合水凝胶和骨骼干细胞在机械刺激下用于骨修复的体内分析","authors":"David Gothard , Michael Rotherham , Emma L. Smith , Janos M. Kanczler , James Henstock , Julia A. Wells , Carol A. Roberts , Omar Qutachi , Heather Peto , Hassan Rashidi , Luis Rojo , Lisa J. White , Molly M. Stevens , Alicia J. El Haj , Felicity R.A.J. Rose , Richard O.C. Oreffo","doi":"10.1016/j.mbm.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β<sub>3,</sub> PTHrP (fast release), or BMP-2, vitamin D<sub>3</sub> (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD<sub>3</sub> increased bone formation. However, fast-release of TGF-β<sub>3</sub> and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD<sub>3</sub>. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 4","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000597/pdfft?md5=c4df681df7c8d540057e5c6a0cc4449b&pid=1-s2.0-S2949907024000597-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair\",\"authors\":\"David Gothard , Michael Rotherham , Emma L. Smith , Janos M. Kanczler , James Henstock , Julia A. Wells , Carol A. Roberts , Omar Qutachi , Heather Peto , Hassan Rashidi , Luis Rojo , Lisa J. White , Molly M. Stevens , Alicia J. El Haj , Felicity R.A.J. Rose , Richard O.C. Oreffo\",\"doi\":\"10.1016/j.mbm.2024.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β<sub>3,</sub> PTHrP (fast release), or BMP-2, vitamin D<sub>3</sub> (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD<sub>3</sub> increased bone formation. However, fast-release of TGF-β<sub>3</sub> and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD<sub>3</sub>. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"2 4\",\"pages\":\"Article 100096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000597/pdfft?md5=c4df681df7c8d540057e5c6a0cc4449b&pid=1-s2.0-S2949907024000597-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair
Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β3, PTHrP (fast release), or BMP-2, vitamin D3 (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD3 increased bone formation. However, fast-release of TGF-β3 and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD3. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.