Wen Deng , Qian-Ni Yang , Hong-Yan Liu , Yu Xia , Huiling Yan , Jing-Wei Huang , Yi-Chen Hu , Liang Zou , Ren-You Gan , Ding-Tao Wu
{"title":"不同稀释未成熟猕猴桃中酚类化合物及其生物功能的比较分析","authors":"Wen Deng , Qian-Ni Yang , Hong-Yan Liu , Yu Xia , Huiling Yan , Jing-Wei Huang , Yi-Chen Hu , Liang Zou , Ren-You Gan , Ding-Tao Wu","doi":"10.1016/j.fochx.2024.101815","DOIUrl":null,"url":null,"abstract":"<div><p>Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars. Indeed, catechin, epicatechin, procyanidin PB1, procyanidin B2, protocatechuic acid, neochlorogenic acid, and gallic acid were measured as the major phenolic components in most TUK, with the highest levels observed in ‘Hongao’ and ‘Cuiyu’ cultivars. Furthermore, TUK exerted strong <em>in vitro</em> antioxidant capacities, inhibitory effects on digestive enzymes, and anti-inflammatory activities. Particularly, their stronger antioxidant effects and inhibitory effects on digestive enzymes were probably attributed to their higher contents of phenolic compounds, especially procyanidin B2. Collectively, our findings reveal that TUK are potential resources of valuable polyphenols, which can be exploited as natural antioxidants and natural inhibitors of α-glucosidase and α-amylase.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101815"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015752400703X/pdfft?md5=d7db81e22208a017f63af94292df24cd&pid=1-s2.0-S259015752400703X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of phenolic compounds in different thinned unripe kiwifruits and their biological functions\",\"authors\":\"Wen Deng , Qian-Ni Yang , Hong-Yan Liu , Yu Xia , Huiling Yan , Jing-Wei Huang , Yi-Chen Hu , Liang Zou , Ren-You Gan , Ding-Tao Wu\",\"doi\":\"10.1016/j.fochx.2024.101815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars. Indeed, catechin, epicatechin, procyanidin PB1, procyanidin B2, protocatechuic acid, neochlorogenic acid, and gallic acid were measured as the major phenolic components in most TUK, with the highest levels observed in ‘Hongao’ and ‘Cuiyu’ cultivars. Furthermore, TUK exerted strong <em>in vitro</em> antioxidant capacities, inhibitory effects on digestive enzymes, and anti-inflammatory activities. Particularly, their stronger antioxidant effects and inhibitory effects on digestive enzymes were probably attributed to their higher contents of phenolic compounds, especially procyanidin B2. Collectively, our findings reveal that TUK are potential resources of valuable polyphenols, which can be exploited as natural antioxidants and natural inhibitors of α-glucosidase and α-amylase.</p></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101815\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259015752400703X/pdfft?md5=d7db81e22208a017f63af94292df24cd&pid=1-s2.0-S259015752400703X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259015752400703X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015752400703X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Comparative analysis of phenolic compounds in different thinned unripe kiwifruits and their biological functions
Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars. Indeed, catechin, epicatechin, procyanidin PB1, procyanidin B2, protocatechuic acid, neochlorogenic acid, and gallic acid were measured as the major phenolic components in most TUK, with the highest levels observed in ‘Hongao’ and ‘Cuiyu’ cultivars. Furthermore, TUK exerted strong in vitro antioxidant capacities, inhibitory effects on digestive enzymes, and anti-inflammatory activities. Particularly, their stronger antioxidant effects and inhibitory effects on digestive enzymes were probably attributed to their higher contents of phenolic compounds, especially procyanidin B2. Collectively, our findings reveal that TUK are potential resources of valuable polyphenols, which can be exploited as natural antioxidants and natural inhibitors of α-glucosidase and α-amylase.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.