Gi-Sang Cheon , Bumtle Kang , Suh-Ryung Kim , Homoon Ryu
{"title":"布尔托普利兹矩阵的矩阵周期和竞争周期 II","authors":"Gi-Sang Cheon , Bumtle Kang , Suh-Ryung Kim , Homoon Ryu","doi":"10.1016/j.laa.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a follow-up to the paper of Cheon et al. (2023) <span><span>[2]</span></span>. Given subsets <em>S</em> and <em>T</em> of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>S</mi><mo>;</mo><mi>T</mi><mo>〉</mo></math></span> is defined to have 1 as the <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>-entry if and only if <span><math><mi>j</mi><mo>−</mo><mi>i</mi><mo>∈</mo><mi>S</mi></math></span> or <span><math><mi>i</mi><mo>−</mo><mi>j</mi><mo>∈</mo><mi>T</mi></math></span>. In the previous paper, we have shown that the matrix period and the competition period of Toeplitz matrices <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>S</mi><mo>;</mo><mi>T</mi><mo>〉</mo></math></span> satisfying the condition (⋆) <span><math><mi>max</mi><mo></mo><mi>S</mi><mo>+</mo><mi>min</mi><mo></mo><mi>T</mi><mo>≤</mo><mi>n</mi></math></span> and <span><math><mi>min</mi><mo></mo><mi>S</mi><mo>+</mo><mi>max</mi><mo></mo><mi>T</mi><mo>≤</mo><mi>n</mi></math></span> are <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>/</mo><mi>d</mi></math></span> and 1, respectively, where <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>s</mi><mo>+</mo><mi>t</mi><mo>|</mo><mi>s</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>T</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>d</mi><mo>,</mo><mi>min</mi><mo></mo><mi>S</mi><mo>)</mo></math></span>. In this paper, we claim that even if (⋆) is relaxed to the existence of elements <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><mi>t</mi><mo>∈</mo><mi>T</mi></math></span> satisfying <span><math><mi>s</mi><mo>+</mo><mi>t</mi><mo>≤</mo><mi>n</mi></math></span> and <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, the same result holds. There are infinitely many Toeplitz matrices that do not satisfy (⋆) but the relaxed condition. For example, for any positive integers <span><math><mi>k</mi><mo>,</mo><mi>n</mi></math></span> with <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>n</mi></math></span>, it is easy to see that <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>;</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>〉</mo></math></span> does not satisfy (⋆) but satisfies the relaxed condition. Furthermore, we show that the limit of the matrix sequence <span><math><msubsup><mrow><mo>{</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>⌋</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>〉</mo></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 27-46"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix periods and competition periods of Boolean Toeplitz matrices II\",\"authors\":\"Gi-Sang Cheon , Bumtle Kang , Suh-Ryung Kim , Homoon Ryu\",\"doi\":\"10.1016/j.laa.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a follow-up to the paper of Cheon et al. (2023) <span><span>[2]</span></span>. Given subsets <em>S</em> and <em>T</em> of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>S</mi><mo>;</mo><mi>T</mi><mo>〉</mo></math></span> is defined to have 1 as the <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>-entry if and only if <span><math><mi>j</mi><mo>−</mo><mi>i</mi><mo>∈</mo><mi>S</mi></math></span> or <span><math><mi>i</mi><mo>−</mo><mi>j</mi><mo>∈</mo><mi>T</mi></math></span>. In the previous paper, we have shown that the matrix period and the competition period of Toeplitz matrices <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>S</mi><mo>;</mo><mi>T</mi><mo>〉</mo></math></span> satisfying the condition (⋆) <span><math><mi>max</mi><mo></mo><mi>S</mi><mo>+</mo><mi>min</mi><mo></mo><mi>T</mi><mo>≤</mo><mi>n</mi></math></span> and <span><math><mi>min</mi><mo></mo><mi>S</mi><mo>+</mo><mi>max</mi><mo></mo><mi>T</mi><mo>≤</mo><mi>n</mi></math></span> are <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>/</mo><mi>d</mi></math></span> and 1, respectively, where <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>s</mi><mo>+</mo><mi>t</mi><mo>|</mo><mi>s</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>T</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>d</mi><mo>,</mo><mi>min</mi><mo></mo><mi>S</mi><mo>)</mo></math></span>. In this paper, we claim that even if (⋆) is relaxed to the existence of elements <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><mi>t</mi><mo>∈</mo><mi>T</mi></math></span> satisfying <span><math><mi>s</mi><mo>+</mo><mi>t</mi><mo>≤</mo><mi>n</mi></math></span> and <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, the same result holds. There are infinitely many Toeplitz matrices that do not satisfy (⋆) but the relaxed condition. For example, for any positive integers <span><math><mi>k</mi><mo>,</mo><mi>n</mi></math></span> with <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>n</mi></math></span>, it is easy to see that <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>;</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>〉</mo></math></span> does not satisfy (⋆) but satisfies the relaxed condition. Furthermore, we show that the limit of the matrix sequence <span><math><msubsup><mrow><mo>{</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〈</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>⌋</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>〉</mo></math></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"703 \",\"pages\":\"Pages 27-46\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003446\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003446","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Matrix periods and competition periods of Boolean Toeplitz matrices II
This paper is a follow-up to the paper of Cheon et al. (2023) [2]. Given subsets S and T of , an Toeplitz matrix is defined to have 1 as the -entry if and only if or . In the previous paper, we have shown that the matrix period and the competition period of Toeplitz matrices satisfying the condition (⋆) and are and 1, respectively, where and . In this paper, we claim that even if (⋆) is relaxed to the existence of elements and satisfying and , the same result holds. There are infinitely many Toeplitz matrices that do not satisfy (⋆) but the relaxed condition. For example, for any positive integers with , it is easy to see that does not satisfy (⋆) but satisfies the relaxed condition. Furthermore, we show that the limit of the matrix sequence is .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.