{"title":"SIRT5 可抑制铁积累、氧化应激和 NLRP3 炎性体的激活,从而防止 T-2 毒素诱导的肝损伤。","authors":"","doi":"10.1016/j.taap.2024.117084","DOIUrl":null,"url":null,"abstract":"<div><p>T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5<sup>−/−</sup>) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5<sup>−/−</sup> mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT5 safeguards against T-2 toxin induced liver injury by repressing iron accumulation, oxidative stress, and the activation of NLRP3 inflammasome\",\"authors\":\"\",\"doi\":\"10.1016/j.taap.2024.117084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5<sup>−/−</sup>) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5<sup>−/−</sup> mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.</p></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24002825\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002825","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
SIRT5 safeguards against T-2 toxin induced liver injury by repressing iron accumulation, oxidative stress, and the activation of NLRP3 inflammasome
T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5−/−) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5−/− mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.