从静息态 fMRI 分析稀疏动态功能连接的新方法

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Houxiang Wang , Jiaqing Chen , Zihao Yuan , Yangxin Huang , Fuchun Lin
{"title":"从静息态 fMRI 分析稀疏动态功能连接的新方法","authors":"Houxiang Wang ,&nbsp;Jiaqing Chen ,&nbsp;Zihao Yuan ,&nbsp;Yangxin Huang ,&nbsp;Fuchun Lin","doi":"10.1016/j.jneumeth.2024.110275","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><p>There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods.</p></div><div><h3>New methods:</h3><p>We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation.</p></div><div><h3>Results:</h3><p>The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data.</p></div><div><h3>Comparison with existing methods:</h3><p>Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC.</p></div><div><h3>Conclusion:</h3><p>We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110275"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI\",\"authors\":\"Houxiang Wang ,&nbsp;Jiaqing Chen ,&nbsp;Zihao Yuan ,&nbsp;Yangxin Huang ,&nbsp;Fuchun Lin\",\"doi\":\"10.1016/j.jneumeth.2024.110275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><p>There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods.</p></div><div><h3>New methods:</h3><p>We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation.</p></div><div><h3>Results:</h3><p>The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data.</p></div><div><h3>Comparison with existing methods:</h3><p>Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC.</p></div><div><h3>Conclusion:</h3><p>We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110275\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002206\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002206","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:人们对了解分布式脑区之间的动态功能连接(DFC)越来越感兴趣。然而,由于当前方法的局限性,从静息态功能磁共振成像(rs-fMRI)中可靠地估计时间动态仍具有挑战性:我们提出了一种名为 HDP-HSMM-BPCA 的新模型,用于高维 rs-fMRI 数据的稀疏 DFC 分析,这是使用贝叶斯非参数隐藏半马尔可夫模型(HSMM)的概率主成分分析的时间扩展。具体来说,我们利用分层 Dirichlet 过程(HDP)先验来消除 HMM 框架的参数假设,从而克服了标准 HMM 的局限性。其吸引人的优越性在于它能够在贝叶斯公式中自动推断特定状态的潜在空间维度:合成数据的实验结果表明,我们的模型优于其他竞争模型,估计精度相对更高。此外,我们还将提出的框架应用于真实的 rs-fMRI 数据,以探索稀疏的 DFC 模式。研究结果表明,高维 rs-fMRI 数据中存在随时间变化的潜在结构和稀疏 DFC 模式:与现有基于 HMM 的 DFC 方法相比,我们的方法克服了标准 HMM 的局限性。HDP-HSMM-BPCA 的观测模型可以发现 rs-fMRI 数据的潜在时间结构。此外,相关的稀疏 DFC 构建算法提供了一种估算稀疏 DFC 的方案:我们描述了一种新的稀疏 DFC 分析计算框架,用于发现 rs-fMRI 数据的潜在时间结构,这将有助于大脑功能连接的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI

Background:

There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods.

New methods:

We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation.

Results:

The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data.

Comparison with existing methods:

Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC.

Conclusion:

We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信