在超声波作用下在金属有机框架中封装白色念珠菌脂肪酶 B,并利用它一锅合成 1,3,4,5 四代吡唑。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2024-12-01 Epub Date: 2024-09-06 DOI:10.1007/s00449-024-03083-4
Zeynab Rangraz, Ali Jafari, Mansour Shahedi, Mostafa M Amini, Zohreh Habibi
{"title":"在超声波作用下在金属有机框架中封装白色念珠菌脂肪酶 B,并利用它一锅合成 1,3,4,5 四代吡唑。","authors":"Zeynab Rangraz, Ali Jafari, Mansour Shahedi, Mostafa M Amini, Zohreh Habibi","doi":"10.1007/s00449-024-03083-4","DOIUrl":null,"url":null,"abstract":"<p><p>Encapsulating the enzyme in metal-organic frameworks (MOFs) is a convenient method to prepare MOF-enzyme biocomposite. In this study, Candida antarctica lipase B (CAL-B) was chosen to immobilize in Cu-BTC MOF under ultrasound irradiation. CAL-B was immobilized in Cu-BTC under ultrasound at 21 kHz and 11.4 W/cm<sup>2</sup> and incubation. 98% of CAL-B was immobilized in Cu-BTC with 99 U/mg activity (threefold more active than the free CAL-B). The prepared biocomposite was characterized using FT-IR, XRD, TGA, SEM, EDX, and BET. The thermal and solvent stability of CAL-B@Cu-BTC was investigated. It was found that at a temperature of 55 ℃, CAL-B@Cu-BTC maintains its activity even after 2 h of incubation. Furthermore, in the presence of 20% and 50% concentrations of MeCN, THF, and DMF, CAL-B@Cu-BTC was found to have an activity of over 80%. A prepared biocatalyst was used to synthesize 1,3,4,5-tetrasubstituted pyrazole derivatives (50-75%) in a one-pot vessel, by adding phenyl hydrazine hydrochlorides, benzaldehydes, and dimethyl acetylenedicarboxylate.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.\",\"authors\":\"Zeynab Rangraz, Ali Jafari, Mansour Shahedi, Mostafa M Amini, Zohreh Habibi\",\"doi\":\"10.1007/s00449-024-03083-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Encapsulating the enzyme in metal-organic frameworks (MOFs) is a convenient method to prepare MOF-enzyme biocomposite. In this study, Candida antarctica lipase B (CAL-B) was chosen to immobilize in Cu-BTC MOF under ultrasound irradiation. CAL-B was immobilized in Cu-BTC under ultrasound at 21 kHz and 11.4 W/cm<sup>2</sup> and incubation. 98% of CAL-B was immobilized in Cu-BTC with 99 U/mg activity (threefold more active than the free CAL-B). The prepared biocomposite was characterized using FT-IR, XRD, TGA, SEM, EDX, and BET. The thermal and solvent stability of CAL-B@Cu-BTC was investigated. It was found that at a temperature of 55 ℃, CAL-B@Cu-BTC maintains its activity even after 2 h of incubation. Furthermore, in the presence of 20% and 50% concentrations of MeCN, THF, and DMF, CAL-B@Cu-BTC was found to have an activity of over 80%. A prepared biocatalyst was used to synthesize 1,3,4,5-tetrasubstituted pyrazole derivatives (50-75%) in a one-pot vessel, by adding phenyl hydrazine hydrochlorides, benzaldehydes, and dimethyl acetylenedicarboxylate.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03083-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03083-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将酶封装在金属有机框架(MOF)中是制备 MOF-酶生物复合材料的一种简便方法。本研究选择了白色念珠菌脂肪酶 B(CAL-B)在超声辐照下固定在 Cu-BTC MOF 中。在 21 kHz 和 11.4 W/cm2 的超声波和培养条件下,CAL-B 被固定在 Cu-BTC MOF 中。98% 的 CAL-B 被固定在 Cu-BTC 中,其活性为 99 U/mg (比游离的 CAL-B 活性高三倍)。利用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)、电离辐射分析(EDX)和BET对制备的生物复合材料进行了表征。研究了 CAL-B@Cu-BTC 的热稳定性和溶剂稳定性。结果发现,在 55 ℃ 的温度下,CAL-B@Cu-BTC 即使在培养 2 小时后仍能保持其活性。此外,在 20% 和 50% 浓度的 MeCN、THF 和 DMF 存在下,CAL-B@Cu-BTC 的活性超过 80%。利用制备的生物催化剂,通过加入苯肼盐酸盐、苯甲醛和乙酰二甲酸二甲酯,在一锅容器中合成了 1,3,4,5-四取代的吡唑衍生物(50-75%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.

Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.

Encapsulating the enzyme in metal-organic frameworks (MOFs) is a convenient method to prepare MOF-enzyme biocomposite. In this study, Candida antarctica lipase B (CAL-B) was chosen to immobilize in Cu-BTC MOF under ultrasound irradiation. CAL-B was immobilized in Cu-BTC under ultrasound at 21 kHz and 11.4 W/cm2 and incubation. 98% of CAL-B was immobilized in Cu-BTC with 99 U/mg activity (threefold more active than the free CAL-B). The prepared biocomposite was characterized using FT-IR, XRD, TGA, SEM, EDX, and BET. The thermal and solvent stability of CAL-B@Cu-BTC was investigated. It was found that at a temperature of 55 ℃, CAL-B@Cu-BTC maintains its activity even after 2 h of incubation. Furthermore, in the presence of 20% and 50% concentrations of MeCN, THF, and DMF, CAL-B@Cu-BTC was found to have an activity of over 80%. A prepared biocatalyst was used to synthesize 1,3,4,5-tetrasubstituted pyrazole derivatives (50-75%) in a one-pot vessel, by adding phenyl hydrazine hydrochlorides, benzaldehydes, and dimethyl acetylenedicarboxylate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信