{"title":"lncRNA MEG3通过与EZH2和YTHDC1相互作用,在术后认知功能障碍中对热蛋白沉积发挥功能性作用","authors":"","doi":"10.1016/j.brainresbull.2024.111060","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated.</p></div><div><h3>Methods</h3><p>In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP).</p></div><div><h3>Results</h3><p>Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1.</p></div><div><h3>Conclusion</h3><p>In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001941/pdfft?md5=00893d330a46302d84dbf9086f3cbcd5&pid=1-s2.0-S0361923024001941-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Functional role of lncRNA MEG3 on pyroptosis through interacting with EZH2 and YTHDC1 in postoperative cognitive dysfunction\",\"authors\":\"\",\"doi\":\"10.1016/j.brainresbull.2024.111060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated.</p></div><div><h3>Methods</h3><p>In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP).</p></div><div><h3>Results</h3><p>Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1.</p></div><div><h3>Conclusion</h3><p>In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001941/pdfft?md5=00893d330a46302d84dbf9086f3cbcd5&pid=1-s2.0-S0361923024001941-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001941\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001941","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Functional role of lncRNA MEG3 on pyroptosis through interacting with EZH2 and YTHDC1 in postoperative cognitive dysfunction
Background
The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated.
Methods
In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP).
Results
Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1.
Conclusion
In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.