{"title":"算子莫比乌斯函数的收缩性","authors":"Thomas Ransford , Dashdondog Tsedenbayar","doi":"10.1016/j.laa.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>T</em> be an injective bounded linear operator on a complex Hilbert space. We characterize the complex numbers <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi></math></span> for which <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><mi>T</mi><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><mi>T</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is a contraction, the characterization being expressed in terms of the numerical range of the possibly unbounded operator <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>.</p><p>When <span><math><mi>T</mi><mo>=</mo><mi>V</mi></math></span>, the Volterra operator on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, this leads to a result of Khadkhuu, Zemánek and the second author, characterizing those <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi></math></span> for which <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><mi>V</mi><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><mi>V</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is a contraction. Taking <span><math><mi>T</mi><mo>=</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we further deduce that <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is never a contraction if <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>λ</mi><mo>≠</mo><mi>μ</mi></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 20-26"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contractivity of Möbius functions of operators\",\"authors\":\"Thomas Ransford , Dashdondog Tsedenbayar\",\"doi\":\"10.1016/j.laa.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>T</em> be an injective bounded linear operator on a complex Hilbert space. We characterize the complex numbers <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi></math></span> for which <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><mi>T</mi><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><mi>T</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is a contraction, the characterization being expressed in terms of the numerical range of the possibly unbounded operator <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>.</p><p>When <span><math><mi>T</mi><mo>=</mo><mi>V</mi></math></span>, the Volterra operator on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, this leads to a result of Khadkhuu, Zemánek and the second author, characterizing those <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi></math></span> for which <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><mi>V</mi><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><mi>V</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is a contraction. Taking <span><math><mi>T</mi><mo>=</mo><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we further deduce that <span><math><mo>(</mo><mi>I</mi><mo>+</mo><mi>λ</mi><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>μ</mi><msup><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> is never a contraction if <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>λ</mi><mo>≠</mo><mi>μ</mi></math></span>.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"703 \",\"pages\":\"Pages 20-26\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952400346X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400346X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let T be an injective bounded linear operator on a complex Hilbert space. We characterize the complex numbers for which is a contraction, the characterization being expressed in terms of the numerical range of the possibly unbounded operator .
When , the Volterra operator on , this leads to a result of Khadkhuu, Zemánek and the second author, characterizing those for which is a contraction. Taking , we further deduce that is never a contraction if and .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.