Saira Rizwan, Beverly Toothman, Bo Li, Abbi L Engel, Rayne R Lim, Sheldon Niernberger, Jinyu Lu, Cloe Ratliff, Yinxiao Xiang, Mark Eminhizer, Jennifer R Chao, Jianhai Du
{"title":"健康和患病人类 RPE 细胞的代谢表型。","authors":"Saira Rizwan, Beverly Toothman, Bo Li, Abbi L Engel, Rayne R Lim, Sheldon Niernberger, Jinyu Lu, Cloe Ratliff, Yinxiao Xiang, Mark Eminhizer, Jennifer R Chao, Jianhai Du","doi":"10.1167/iovs.65.11.5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells.</p><p><strong>Methods: </strong>We profiled nutrient use of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell-derived RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays.</p><p><strong>Results: </strong>Differentiated fRPE cells and healthy iPSC RPE cells can use 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient use becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can use 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to use lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased use of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot use lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation toward an epithelial phenotype, restoring the ability to use these nutrients.</p><p><strong>Conclusions: </strong>Epithelial phenotype confers metabolic flexibility to healthy RPE for using various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and use in RPE differentiation and diseases.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic Phenotyping of Healthy and Diseased Human RPE Cells.\",\"authors\":\"Saira Rizwan, Beverly Toothman, Bo Li, Abbi L Engel, Rayne R Lim, Sheldon Niernberger, Jinyu Lu, Cloe Ratliff, Yinxiao Xiang, Mark Eminhizer, Jennifer R Chao, Jianhai Du\",\"doi\":\"10.1167/iovs.65.11.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells.</p><p><strong>Methods: </strong>We profiled nutrient use of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell-derived RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays.</p><p><strong>Results: </strong>Differentiated fRPE cells and healthy iPSC RPE cells can use 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient use becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can use 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to use lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased use of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot use lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation toward an epithelial phenotype, restoring the ability to use these nutrients.</p><p><strong>Conclusions: </strong>Epithelial phenotype confers metabolic flexibility to healthy RPE for using various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and use in RPE differentiation and diseases.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.65.11.5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.65.11.5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Metabolic Phenotyping of Healthy and Diseased Human RPE Cells.
Purpose: Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells.
Methods: We profiled nutrient use of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell-derived RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays.
Results: Differentiated fRPE cells and healthy iPSC RPE cells can use 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient use becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can use 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to use lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased use of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot use lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation toward an epithelial phenotype, restoring the ability to use these nutrients.
Conclusions: Epithelial phenotype confers metabolic flexibility to healthy RPE for using various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and use in RPE differentiation and diseases.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.