可换算平方和矩阵族的正态近似值

IF 1 3区 数学 Q1 MATHEMATICS
Alexandru Chirvasitu
{"title":"可换算平方和矩阵族的正态近似值","authors":"Alexandru Chirvasitu","doi":"10.1016/j.laa.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>For any square-summable commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></math></span> of complex <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices there is a normal commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> no farther from it, in squared normalized <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> distance, than the diameter of the numerical range of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Specializing in one direction (limiting case of the inequality for finite <em>I</em>) this recovers a result of M. Fraas: if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>ℓ</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a multiple of the identity for commuting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> then the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are normal; specializing in another (singleton <em>I</em>) retrieves the well-known fact that close-to-isometric matrices are close to isometries.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal approximations of commuting square-summable matrix families\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"10.1016/j.laa.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any square-summable commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></math></span> of complex <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices there is a normal commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> no farther from it, in squared normalized <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> distance, than the diameter of the numerical range of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Specializing in one direction (limiting case of the inequality for finite <em>I</em>) this recovers a result of M. Fraas: if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>ℓ</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a multiple of the identity for commuting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> then the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are normal; specializing in another (singleton <em>I</em>) retrieves the well-known fact that close-to-isometric matrices are close to isometries.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任何复 n×n 矩阵的可平方和换向族 (Ai)i∈I,都有一个正态换向族 (Bi)i,其平方归一化 ℓ2 距离不远于 ∑iAi⁎Ai 数值范围的直径。Fraas 的一个结果:如果∑i=1ℓAi⁎Ai 是换元 Ai∈Mn(C)的等式的倍数,那么 Ai 是正交的;而从另一个方向(单子 I)来看,则可以得到一个众所周知的事实:接近等距矩阵接近于等距矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal approximations of commuting square-summable matrix families

For any square-summable commuting family (Ai)iI of complex n×n matrices there is a normal commuting family (Bi)i no farther from it, in squared normalized 2 distance, than the diameter of the numerical range of iAiAi. Specializing in one direction (limiting case of the inequality for finite I) this recovers a result of M. Fraas: if i=1AiAi is a multiple of the identity for commuting AiMn(C) then the Ai are normal; specializing in another (singleton I) retrieves the well-known fact that close-to-isometric matrices are close to isometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信