{"title":"可换算平方和矩阵族的正态近似值","authors":"Alexandru Chirvasitu","doi":"10.1016/j.laa.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>For any square-summable commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></math></span> of complex <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices there is a normal commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> no farther from it, in squared normalized <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> distance, than the diameter of the numerical range of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Specializing in one direction (limiting case of the inequality for finite <em>I</em>) this recovers a result of M. Fraas: if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>ℓ</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a multiple of the identity for commuting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> then the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are normal; specializing in another (singleton <em>I</em>) retrieves the well-known fact that close-to-isometric matrices are close to isometries.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 11-19"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal approximations of commuting square-summable matrix families\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"10.1016/j.laa.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any square-summable commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>I</mi></mrow></msub></math></span> of complex <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices there is a normal commuting family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> no farther from it, in squared normalized <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> distance, than the diameter of the numerical range of <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Specializing in one direction (limiting case of the inequality for finite <em>I</em>) this recovers a result of M. Fraas: if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>ℓ</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a multiple of the identity for commuting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> then the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are normal; specializing in another (singleton <em>I</em>) retrieves the well-known fact that close-to-isometric matrices are close to isometries.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"703 \",\"pages\":\"Pages 11-19\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Normal approximations of commuting square-summable matrix families
For any square-summable commuting family of complex matrices there is a normal commuting family no farther from it, in squared normalized distance, than the diameter of the numerical range of . Specializing in one direction (limiting case of the inequality for finite I) this recovers a result of M. Fraas: if is a multiple of the identity for commuting then the are normal; specializing in another (singleton I) retrieves the well-known fact that close-to-isometric matrices are close to isometries.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.