J. Ceballos-Zumaya , I.A. Sustaita-Torres , J.S. Pérez-Huerta , D. Ariza-Flores , J. Madrigal-Melchor
{"title":"基于二维材料的 SPR 生物传感器的性能参数与石墨烯化学势的函数关系","authors":"J. Ceballos-Zumaya , I.A. Sustaita-Torres , J.S. Pérez-Huerta , D. Ariza-Flores , J. Madrigal-Melchor","doi":"10.1016/j.ijleo.2024.172013","DOIUrl":null,"url":null,"abstract":"<div><p>The present research analyze the performance parameters of a surface plasmon resonance (<em>SPR</em>) biosensor such as sensitivity, detection accuracy, quality factor, and combined sensitivity factor as a function of graphene chemical potential in a metal/<em>2D</em> material/graphene multilayer system. The attenuated total reflection of <em>SPR</em> was studied as a function of the number of graphene sheets for different <em>2D</em> materials (<em>ZnO</em>, <em>MoS</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>MoSe</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>WSe</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>WS</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and calculated using the transfer matrix method. It was found that there is a critical value of the chemical potential for which the performance parameters change their behavior abruptly for all type of <em>2D</em> materials used in the biosensor configuration; this chemical potential value is called <em>critical chemical potential</em>. Furthermore, the number of graphene sheets have a strong effect on the performance parameters. Finally, an analytical expression for the sensitivity was deduced, which allows to explain their behavior for the different <em>2D</em> materials used in the <em>SPR</em> biosensor.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"314 ","pages":"Article 172013"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance parameters as a function of graphene’s chemical potential for SPR biosensor based on 2D materials\",\"authors\":\"J. Ceballos-Zumaya , I.A. Sustaita-Torres , J.S. Pérez-Huerta , D. Ariza-Flores , J. Madrigal-Melchor\",\"doi\":\"10.1016/j.ijleo.2024.172013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research analyze the performance parameters of a surface plasmon resonance (<em>SPR</em>) biosensor such as sensitivity, detection accuracy, quality factor, and combined sensitivity factor as a function of graphene chemical potential in a metal/<em>2D</em> material/graphene multilayer system. The attenuated total reflection of <em>SPR</em> was studied as a function of the number of graphene sheets for different <em>2D</em> materials (<em>ZnO</em>, <em>MoS</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>MoSe</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>WSe</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <em>WS</em><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and calculated using the transfer matrix method. It was found that there is a critical value of the chemical potential for which the performance parameters change their behavior abruptly for all type of <em>2D</em> materials used in the biosensor configuration; this chemical potential value is called <em>critical chemical potential</em>. Furthermore, the number of graphene sheets have a strong effect on the performance parameters. Finally, an analytical expression for the sensitivity was deduced, which allows to explain their behavior for the different <em>2D</em> materials used in the <em>SPR</em> biosensor.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"314 \",\"pages\":\"Article 172013\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004121\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Performance parameters as a function of graphene’s chemical potential for SPR biosensor based on 2D materials
The present research analyze the performance parameters of a surface plasmon resonance (SPR) biosensor such as sensitivity, detection accuracy, quality factor, and combined sensitivity factor as a function of graphene chemical potential in a metal/2D material/graphene multilayer system. The attenuated total reflection of SPR was studied as a function of the number of graphene sheets for different 2D materials (ZnO, MoS, MoSe, WSe, WS) and calculated using the transfer matrix method. It was found that there is a critical value of the chemical potential for which the performance parameters change their behavior abruptly for all type of 2D materials used in the biosensor configuration; this chemical potential value is called critical chemical potential. Furthermore, the number of graphene sheets have a strong effect on the performance parameters. Finally, an analytical expression for the sensitivity was deduced, which allows to explain their behavior for the different 2D materials used in the SPR biosensor.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.