三氟拉嗪通过 AKT/TXNIP 信号通路诱导线粒体依赖性凋亡,从而发挥抗骨肉瘤的作用。

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
{"title":"三氟拉嗪通过 AKT/TXNIP 信号通路诱导线粒体依赖性凋亡,从而发挥抗骨肉瘤的作用。","authors":"","doi":"10.1016/j.taap.2024.117080","DOIUrl":null,"url":null,"abstract":"<div><p>The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. <em>In vivo</em>, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trifluoperazine exerts anti-osteosarcoma effect by inducing mitochondria-dependent apoptosis via AKT/TXNIP signaling pathway\",\"authors\":\"\",\"doi\":\"10.1016/j.taap.2024.117080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. <em>In vivo</em>, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.</p></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24002783\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002783","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,骨肉瘤(OS)患者的存活率一直停滞不前。寻找新的疗法和药物至关重要。一种名为三氟拉嗪(Trifluoperazine,TFP)的特许抗精神病药物可显著降低多种癌症的生长。然而,TFP在OS中的确切分子途径仍有待发现。我们的研究发现,TFP能大大降低OS细胞的迁移和生长,并导致G0/G1细胞周期的停滞。结合RNA-Seq数据和进一步研究,我们证实TFP通过提高硫氧还蛋白结合蛋白(TXNIP)的表达,促进活性氧(ROS)的产生,从而诱导线粒体依赖性凋亡。有趣的是,我们首次证明 AKT 是 TXNIP 在 OS 细胞中的上游调控靶点。AKT 的去磷酸化导致 TXNIP 表达增加,进一步阐明了 TFP 的抗癌机制。在体内,TFP可抑制皮下OS细胞增殖并诱导OS细胞凋亡,且无明显副作用。总之,我们的研究结果表明,TFP是一种治疗OS的潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trifluoperazine exerts anti-osteosarcoma effect by inducing mitochondria-dependent apoptosis via AKT/TXNIP signaling pathway

The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. In vivo, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信