Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam
{"title":"纳米晶体形成过程中的竞争成核途径","authors":"Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam","doi":"10.1038/s41524-024-01371-x","DOIUrl":null,"url":null,"abstract":"<p>Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"49 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competing nucleation pathways in nanocrystal formation\",\"authors\":\"Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam\",\"doi\":\"10.1038/s41524-024-01371-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01371-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01371-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Competing nucleation pathways in nanocrystal formation
Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.