纳米晶体形成过程中的竞争成核途径

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam
{"title":"纳米晶体形成过程中的竞争成核途径","authors":"Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam","doi":"10.1038/s41524-024-01371-x","DOIUrl":null,"url":null,"abstract":"<p>Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"49 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competing nucleation pathways in nanocrystal formation\",\"authors\":\"Carlos R. Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Quentin Gromoff, Jacek Goniakowski, Julien Lam\",\"doi\":\"10.1038/s41524-024-01371-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01371-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01371-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管数值方法在补充实验测量方面做出了许多努力,但仍有一些基本挑战阻碍了人们真正提供纳米晶体成核过程的原子图景。其中,我们的研究解决了三个障碍:(1) 机器学习力场包括长程相互作用,能够捕捉底层原子相互作用的细微差别;(2) 以数据为驱动,描述与多种晶体多晶体相关的复杂结构景观中的局部有序性;(3) 利用暴力采样和稀有事件采样,比较大范围温度下的结果。总之,我们的模拟策略使我们能够研究纳米液滴熔体的氧化锌结晶。值得注意的是,我们的结果表明,不同的成核途径会因研究的过冷程度而产生竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Competing nucleation pathways in nanocrystal formation

Competing nucleation pathways in nanocrystal formation

Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one’s ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信