图的类拉普拉奇能量最小化

IF 1 3区 数学 Q1 MATHEMATICS
Gao-Xuan Luo, Shi-Cai Gong , Jing Tian
{"title":"图的类拉普拉奇能量最小化","authors":"Gao-Xuan Luo,&nbsp;Shi-Cai Gong ,&nbsp;Jing Tian","doi":"10.1016/j.laa.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a connected simple graph with order <em>n</em> and Laplacian matrix <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The Laplacian-energy-like of <em>G</em> is defined as<span><span><span><math><mi>L</mi><mi>E</mi><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msqrt><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>. In this paper, with the aid of Ferrers diagrams of threshold graphs, we provide an algebraic combinatorial approach to determine the graphs with minimal Laplacian-energy-like among all connected graphs having <em>n</em> vertices and <em>m</em> edges, showing that the extremal graph is a special threshold graph, named as the quasi-complete graph.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 179-194"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing the Laplacian-energy-like of graphs\",\"authors\":\"Gao-Xuan Luo,&nbsp;Shi-Cai Gong ,&nbsp;Jing Tian\",\"doi\":\"10.1016/j.laa.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em> be a connected simple graph with order <em>n</em> and Laplacian matrix <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The Laplacian-energy-like of <em>G</em> is defined as<span><span><span><math><mi>L</mi><mi>E</mi><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msqrt><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the eigenvalue of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>. In this paper, with the aid of Ferrers diagrams of threshold graphs, we provide an algebraic combinatorial approach to determine the graphs with minimal Laplacian-energy-like among all connected graphs having <em>n</em> vertices and <em>m</em> edges, showing that the extremal graph is a special threshold graph, named as the quasi-complete graph.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"702 \",\"pages\":\"Pages 179-194\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003434\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003434","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是阶数为 n 的连通简单图,且有拉普拉斯矩阵 L(G)。G 的类拉普拉奇能量定义为:LEL(G)=∑i=1nλi,其中,λi 是 L(G) i=1,...,n 时的特征值。本文借助阈值图的费勒斯图,提供了一种代数组合方法,以确定在具有 n 个顶点和 m 条边的所有连通图中具有最小拉普拉奇能样的图,证明极值图是一种特殊的阈值图,命名为准完全图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing the Laplacian-energy-like of graphs

Let G be a connected simple graph with order n and Laplacian matrix L(G). The Laplacian-energy-like of G is defined asLEL(G)=i=1nλi, where λi is the eigenvalue of L(G) for i=1,,n. In this paper, with the aid of Ferrers diagrams of threshold graphs, we provide an algebraic combinatorial approach to determine the graphs with minimal Laplacian-energy-like among all connected graphs having n vertices and m edges, showing that the extremal graph is a special threshold graph, named as the quasi-complete graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信