Ka My Dang , Yi Jia Zhang , Tianchen Zhang , Chao Wang , Anton Sinner , Piero Coronica , Joyce K.S. Poon
{"title":"NeuroQuantify - 利用深度学习检测和量化神经元细胞和神经元长度的图像分析软件。","authors":"Ka My Dang , Yi Jia Zhang , Tianchen Zhang , Chao Wang , Anton Sinner , Piero Coronica , Joyce K.S. Poon","doi":"10.1016/j.jneumeth.2024.110273","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.</p></div><div><h3>New method</h3><p>We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.</p></div><div><h3>Results</h3><p>NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.</p></div><div><h3>Comparison with existing methods</h3><p>NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.</p></div><div><h3>Conclusions</h3><p>We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at <span><span>https://github.com/StanleyZ0528/neural-image-segmentation</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"411 ","pages":"Article 110273"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024002188/pdfft?md5=0023c239982bf823c04acc4b3908a6ee&pid=1-s2.0-S0165027024002188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"NeuroQuantify – An image analysis software for detection and quantification of neuron cells and neurite lengths using deep learning\",\"authors\":\"Ka My Dang , Yi Jia Zhang , Tianchen Zhang , Chao Wang , Anton Sinner , Piero Coronica , Joyce K.S. Poon\",\"doi\":\"10.1016/j.jneumeth.2024.110273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.</p></div><div><h3>New method</h3><p>We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.</p></div><div><h3>Results</h3><p>NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.</p></div><div><h3>Comparison with existing methods</h3><p>NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.</p></div><div><h3>Conclusions</h3><p>We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at <span><span>https://github.com/StanleyZ0528/neural-image-segmentation</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"411 \",\"pages\":\"Article 110273\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002188/pdfft?md5=0023c239982bf823c04acc4b3908a6ee&pid=1-s2.0-S0165027024002188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002188\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
NeuroQuantify – An image analysis software for detection and quantification of neuron cells and neurite lengths using deep learning
Background
The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable quantitative information about neuron growth and neuronal differentiation, including the number of cells, neurites, neurite length and neurite orientation. This information is essential for assessing the development of neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for example, the study of neurodegenerative diseases and pharmaceuticals.
New method
We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently and quickly segment cells and neurites in phase contrast microscopy images.
Results
NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post-processing of the images for the quantitative neurite length measurement based on segmentation of phase contrast microscopy images, and (iii) identification of neurite orientations.
Comparison with existing methods
NeuroQuantify overcomes some of the limitations of existing methods in the automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.
Conclusions
We offer a valuable tool to assess network development rapidly and effectively. The user-friendly NeuroQuantify software can be installed and freely downloaded from GitHub at https://github.com/StanleyZ0528/neural-image-segmentation.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.