基于成本敏感型密集连接深度神经网络的设备建模

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaoying Tang;Zhiqiang Li;Lang Zeng;Hongwei Zhou;Xiaoxu Cheng;Zhenjie Yao
{"title":"基于成本敏感型密集连接深度神经网络的设备建模","authors":"Xiaoying Tang;Zhiqiang Li;Lang Zeng;Hongwei Zhou;Xiaoxu Cheng;Zhenjie Yao","doi":"10.1109/JEDS.2024.3447032","DOIUrl":null,"url":null,"abstract":"Engineers used TCAD tools for semiconductor devices modeling. However, it is computationally expensive and time-consuming for advanced devices with smaller dimensions. Therefore, this work proposes a machine learning-based device modeling algorithm to capture the complex nonlinear relationship between parameters and electrical characteristics of gate-all-around (GAA) nanowire field-effect transistors (NWFETs) from technology computer-aided design (TCAD) simulation results. This method utilizes a densely connected deep neural networks (DenseDNN), which establishes direct connections between layers in the neural networks, provides stronger feature extraction and information transmission capabilities. By incorporating cost-sensitive learning methods, the proposed model focus more on the critical data that determines device characteristics, leading to accurate prediction of key device characteristics under various parameters. Experimental results on a test dataset of 116 NWFETs demonstrate the effectiveness of this method. The DenseDNN model with cost-sensitive learning exhibits better performance than traditional deep neural networks (DNN) with various widths and depths, with a prediction error below 1.62%. Moreover, compared to TCAD simulation results, the model can speedup \n<inline-formula> <tex-math>$10^{6}\\times$ </tex-math></inline-formula>\n.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643157","citationCount":"0","resultStr":"{\"title\":\"Device Modeling Based on Cost-Sensitive Densely Connected Deep Neural Networks\",\"authors\":\"Xiaoying Tang;Zhiqiang Li;Lang Zeng;Hongwei Zhou;Xiaoxu Cheng;Zhenjie Yao\",\"doi\":\"10.1109/JEDS.2024.3447032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineers used TCAD tools for semiconductor devices modeling. However, it is computationally expensive and time-consuming for advanced devices with smaller dimensions. Therefore, this work proposes a machine learning-based device modeling algorithm to capture the complex nonlinear relationship between parameters and electrical characteristics of gate-all-around (GAA) nanowire field-effect transistors (NWFETs) from technology computer-aided design (TCAD) simulation results. This method utilizes a densely connected deep neural networks (DenseDNN), which establishes direct connections between layers in the neural networks, provides stronger feature extraction and information transmission capabilities. By incorporating cost-sensitive learning methods, the proposed model focus more on the critical data that determines device characteristics, leading to accurate prediction of key device characteristics under various parameters. Experimental results on a test dataset of 116 NWFETs demonstrate the effectiveness of this method. The DenseDNN model with cost-sensitive learning exhibits better performance than traditional deep neural networks (DNN) with various widths and depths, with a prediction error below 1.62%. Moreover, compared to TCAD simulation results, the model can speedup \\n<inline-formula> <tex-math>$10^{6}\\\\times$ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643157/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643157/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

工程师使用 TCAD 工具进行半导体器件建模。然而,对于尺寸较小的先进器件来说,这种方法计算成本高且耗时。因此,本研究提出了一种基于机器学习的器件建模算法,以从技术计算机辅助设计(TCAD)仿真结果中捕捉全栅极(GAA)纳米线场效应晶体管(NWFET)参数与电气特性之间复杂的非线性关系。该方法利用密集连接的深度神经网络(DenseDNN),在神经网络各层之间建立直接连接,提供更强的特征提取和信息传输能力。通过采用对成本敏感的学习方法,所提出的模型更加关注决定设备特性的关键数据,从而在各种参数下准确预测关键设备特性。在 116 个 NWFET 测试数据集上的实验结果证明了该方法的有效性。与具有不同宽度和深度的传统深度神经网络(DNN)相比,具有成本敏感学习的 DenseDNN 模型表现出更好的性能,预测误差低于 1.62%。此外,与 TCAD 仿真结果相比,该模型的速度提高了 10^{6}/times$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device Modeling Based on Cost-Sensitive Densely Connected Deep Neural Networks
Engineers used TCAD tools for semiconductor devices modeling. However, it is computationally expensive and time-consuming for advanced devices with smaller dimensions. Therefore, this work proposes a machine learning-based device modeling algorithm to capture the complex nonlinear relationship between parameters and electrical characteristics of gate-all-around (GAA) nanowire field-effect transistors (NWFETs) from technology computer-aided design (TCAD) simulation results. This method utilizes a densely connected deep neural networks (DenseDNN), which establishes direct connections between layers in the neural networks, provides stronger feature extraction and information transmission capabilities. By incorporating cost-sensitive learning methods, the proposed model focus more on the critical data that determines device characteristics, leading to accurate prediction of key device characteristics under various parameters. Experimental results on a test dataset of 116 NWFETs demonstrate the effectiveness of this method. The DenseDNN model with cost-sensitive learning exhibits better performance than traditional deep neural networks (DNN) with various widths and depths, with a prediction error below 1.62%. Moreover, compared to TCAD simulation results, the model can speedup $10^{6}\times$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信