{"title":"层间扭曲有效调节 InSe/Sb 范德华异质结构中的层间激子","authors":"Anqi Shi, Ruilin Guan, Jin Lv, Zifan Niu, Wenxia Zhang, Shiyan Wang, Xiuyun Zhang, Bing Wang, Xianghong Niu","doi":"10.1038/s41524-024-01384-6","DOIUrl":null,"url":null,"abstract":"<p>The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°–60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"56 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interlayer twist effectively regulates interlayer excitons in InSe/Sb van der Waals heterostructure\",\"authors\":\"Anqi Shi, Ruilin Guan, Jin Lv, Zifan Niu, Wenxia Zhang, Shiyan Wang, Xiuyun Zhang, Bing Wang, Xianghong Niu\",\"doi\":\"10.1038/s41524-024-01384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°–60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01384-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01384-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The interlayer twist effectively regulates interlayer excitons in InSe/Sb van der Waals heterostructure
The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°–60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.