用于岩土工程中三维块体切割和三维网格切割的开源 MATLAB 工具箱

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ning Zhang , Hong Zheng , Miao Yang , Ningbo Wang
{"title":"用于岩土工程中三维块体切割和三维网格切割的开源 MATLAB 工具箱","authors":"Ning Zhang ,&nbsp;Hong Zheng ,&nbsp;Miao Yang ,&nbsp;Ningbo Wang","doi":"10.1016/j.advengsoft.2024.103762","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a simple approach and its associated MATLAB toolbox for 3D block cutting and mesh cutting. The approach is suitable for the meshes of numerical methods including the Key Block Theory (KBT), the Discontinuous Deformation Analysis (DDA), the Numerical Manifold Method (NMM), and the cut Finite Element Method (Cut-FEM). The strategy is based on calculations on convex bodies. It uses two different forms of representation: the geometric representation which includes vertices and faces, and the algebraic representation which consists of inequalities. The cutting was implemented on the algebraic representation, and the resulting inequalities were converted into a geometric representation. The above strategy turned out to be robust and straightforward to execute, at the cost of a general body being regarded as a combination of convex bodies. The efficiency guarantee was considered through pre-checking algorithms. The source code was provided, as well as some simple examples.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"197 ","pages":"Article 103762"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An open-source MATLAB toolbox for 3D block cutting and 3D mesh cutting in geotechnical engineering\",\"authors\":\"Ning Zhang ,&nbsp;Hong Zheng ,&nbsp;Miao Yang ,&nbsp;Ningbo Wang\",\"doi\":\"10.1016/j.advengsoft.2024.103762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a simple approach and its associated MATLAB toolbox for 3D block cutting and mesh cutting. The approach is suitable for the meshes of numerical methods including the Key Block Theory (KBT), the Discontinuous Deformation Analysis (DDA), the Numerical Manifold Method (NMM), and the cut Finite Element Method (Cut-FEM). The strategy is based on calculations on convex bodies. It uses two different forms of representation: the geometric representation which includes vertices and faces, and the algebraic representation which consists of inequalities. The cutting was implemented on the algebraic representation, and the resulting inequalities were converted into a geometric representation. The above strategy turned out to be robust and straightforward to execute, at the cost of a general body being regarded as a combination of convex bodies. The efficiency guarantee was considered through pre-checking algorithms. The source code was provided, as well as some simple examples.</p></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"197 \",\"pages\":\"Article 103762\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824001698\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824001698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种用于三维块切割和网格切割的简单方法及其相关的 MATLAB 工具箱。该方法适用于包括关键块理论(KBT)、非连续变形分析(DDA)、数值曲面法(NMM)和切割有限元法(Cut-FEM)在内的数值方法的网格。该策略基于对凸体的计算。它使用两种不同的表示形式:包括顶点和面的几何表示和由不等式组成的代数表示。切割是在代数表示上实现的,由此产生的不等式被转换成几何表示。事实证明,上述策略既稳健又易于执行,但代价是一般体被视为凸体的组合。效率保证是通过预检查算法来考虑的。我们提供了源代码和一些简单的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An open-source MATLAB toolbox for 3D block cutting and 3D mesh cutting in geotechnical engineering

This study presents a simple approach and its associated MATLAB toolbox for 3D block cutting and mesh cutting. The approach is suitable for the meshes of numerical methods including the Key Block Theory (KBT), the Discontinuous Deformation Analysis (DDA), the Numerical Manifold Method (NMM), and the cut Finite Element Method (Cut-FEM). The strategy is based on calculations on convex bodies. It uses two different forms of representation: the geometric representation which includes vertices and faces, and the algebraic representation which consists of inequalities. The cutting was implemented on the algebraic representation, and the resulting inequalities were converted into a geometric representation. The above strategy turned out to be robust and straightforward to execute, at the cost of a general body being regarded as a combination of convex bodies. The efficiency guarantee was considered through pre-checking algorithms. The source code was provided, as well as some simple examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信